2.5 CE Credits. Special Issue on Prediction (JINS 22:10, 2016): CE Bundle 1

apa-logo_white_screenThe International Neuropsychological Society is approved by the American Psychological Association to sponsor continuing education for psychologists. The International Neuropsychological Society maintains responsibility for this program and its content.
Educational Objectives
  1. Describe the pattern of cerebral amyloid accumulation seen across stages of preclinical AD.
  2. Describe relationships between AD biomarkers and aspects of episodic memory function.
  3. Describe relationships between AD biomarkers and future neurocognitive performance.

Course Information
Target Audience:Intermediate
Availability:Date Available: 2016-11-30
You may obtain CE for this JINS package at any time.
Offered for CEYes
CostMembers $25
Non-Members $37.50
Refund PolicyThis JINS package is not eligible for refunds
CE Credits2.5

John L. Woodard, Larry J. Seidman, Julie C. Stout


Prediction of behavior and related outcomes has long been a principal goal of psychology. The development of intelligence tests in the early 20th century led to new strategies for predicting academic and occupational performance (Sternberg, 1996). Similarly, in the mid-19th century, Fechner’s use of mathematical models for prediction of behavior (Wertheimer, 1987) initiated a long tradition that has continued to the present day, which can be seen in the mathematical models of learning developed by Clark Hull (Hull, 1943), dynamic models of the development of spatial memory abilities (Spencer, Smith, & Thelen, 2001), and others. These ideas also led to information processing theories of memory (Atkinson & Shiffrin, 1968; Raaijmakers & Shiffrin, 1980), which have been used to predict specific stages of memory processing that are impaired in patient groups (Brown et al., 1995; Brown, Woodard, & Rich, 1994). Recently, use of prediction strategies in neuropsychology has turned toward development of new approaches for identification and characterization of the development and disease course of neurocognitive and neuropsychiatric disorders.

Prediction involves making a statement about an event that is uncertain, typically based on some type of known information. Although the term “prediction” brings to mind the forecasting of some future outcome or event, the term prediction can also be used for concurrent diagnostic purposes. Since approximately 2000, the number of research studies focused on prediction of diagnosis and clinical trajectories has increased dramatically. Figure 1 shows the number of publications per year returned from a simple search of the terms “preclinical prediction” in the National Library of Medicine (PubMed) database from 1950 to October 1, 2016. Studies of preclinical prediction in neuropsychology have typically focused on identification of persons at the highest risk for specific cognitive conditions. Early identification of risk, or of subtle signs of incipient disease, opens the possibility for treatments to prevent disease development, or to delay onset or slow progression of clinically significant symptoms. Prediction studies after brain injury have also been important for prognosticating the trajectory of recovery and for planning resource allocation for treatment.

State-of-the-art prediction strategies have been facilitated by at least two significant developments over the past 25 years. First, the availability of high-speed computers and software capable of performing complex statistical analyses has supported the development and validation of complex theoretical predictive models. For instance, machine learning approaches to prediction would not be possible without powerful computing resources (Hey, 2010). Machine learning has been successfully used in the context of diagnosis (Bigler, 2013; Mundt, Freed, & Greist, 2000; Teipel, Meindl, Grinberg, Heinsen, & Hampel, 2008) and prognosis (Gutman et al., 2015; Koutsouleris et al., 2009; Moradi, Pepe, Gaser, Huttunen, & Tohka, 2015; Schmidt-Richberg et al., 2016). Second, the identification of biomarkers of a variety of neurological and psychiatric conditions has provided a set of predictors that are highly sensitive to risk factors and pathological changes leading to these conditions (Chong, Lim, & Sahadevan, 2006; Craig-Schapiro, Fagan, & Holtzman, 2009; Mayeux, 2004; Sharma & Laskowitz, 2012; Shaw, Korecka, Clark, Lee, & Trojanowski, 2007). Such biomarkers can be used to test predictions regarding possible etiologies associated with neuropsychological abnormalities (Ivanoiu et al., 2015; Miller et al., 2008; Wirth et al., 2013). Improved genetic testing has also contributed to more accurate predictions of functional changes when combined with neuropsychological and imaging data (O’Hara et al., 1998; Reiman et al., 2004; Small et al., 1996). Some researchers have argued, based on the literature, that “neuromarkers often provide better predictions (neuroprognosis), alone or in combination with other measures, than traditional behavioral measures” (page 11, Gabrieli, Ghosh, & Whitfield-Gabrieli, 2015). As data increasingly emerge, our field will be enriched by identifying the best combinations of measures to predict disease.

Many neurocognitive disorders are known to evolve from a presymptomatic to mildly clinical state to a fully clinical disorder. In essence, they go through different biological and clinical “stages” (McGorry et al., 2007). Two disorders receiving a great deal of research over the past two decades are Alzheimer’s disease (AD) and schizophrenia. For example, AD is preceded by mild cognitive impairment (MCI), and in many cases schizophrenia is preceded by a clinical high-risk (CHR) state identified by attenuated positive psychotic symptoms (i.e., mild delusions and hallucinations with some degree of intact reality testing; Tsuang et al., 2013; Yung & McGorry, 1996). At least in principle, identifying predictors and mechanisms of transition to AD or to psychosis among individuals showing signs of incipient neurocognitive disorders are critical steps in the search for preventive or early intervention strategies (Woodberry, Shapiro, Bryant, & Seidman, 2016). Interest in early detection and prevention of schizophrenia and other psychotic disorders has led to more than a decade of work studying young people who may be at risk of developing a psychotic illness, and advances have been made in prediction of transition to psychosis from a CHR stage (Cannon et al., 20082016; Carrion et al., 2016), including the usage of neuropsychological measures (Giuliano et al., 2012; Seidman, Giuliano, & Walker, 2010; Seidman et al., 2016).

Studies investigating early detection of neurological and psychiatric conditions have improved understanding of etiology and diagnosis significantly, and they have opened new avenues for management. Presymptomatic detection is also essential to the development of effective intervention strategies, as it provides a window for preventing/delaying onset or reducing severity. This special issue of the Journal of the International Neuropsychological Society includes nine papers describing cutting-edge empirical findings that exemplify key methodological advances for preclinical detection of a variety of neurological, neurodevelopmental, and neuropsychiatric conditions. Methodological approaches taken include assessment of familial and genetic risk analyses, phenotypic characterization using cognitive and/or imaging methods, and evaluation of biomarker effectiveness. These papers provide substantive integrative and synthetic summaries of the current status of preclinical detection methodologies and future directions for the field.

As novel biomarkers of early, disease-related changes are identified, strategies for making optimal use of this information are becoming increasingly important. In this special issue, several papers focus on description of novel methodologies for combining biomarker data with other clinical information for diagnosis or prognosis. In a thorough literature review, Cooper and colleagues describe state-of-the-art objective biomarkers in prodromal Parkinson’s disease (PD), and they discuss several strategies for combining these biomarkers with clinical and genetic data for improving sensitivity and specificity for identification of persons with prodromal PD. Soldan and colleagues demonstrate that beta-amyloid and phosphorylated tau measured in cerebrospinal fluid can predict cognitive functioning as long as 10 years later. Using data from the Alzheimer’s Disease Neuroimaging Initiative, Edmonds and colleagues demonstrate how a novel method for staging preclinical AD using amyloid positron emission tomography (PET) imaging can be combined with detailed cognitive assessment to better characterize preclinical AD. Notably, this study found that considerable amyloid accumulation had already occurred before clinical diagnosis. Finally, in a cross-sectional study, Quenon and colleagues demonstrate the relationships between imaging measures of extent of early AD neuropathology, as indexed by in vivo neuroimaging biomarkers (amyloid PET, hippocampal volume, and measures of cortical thickness) and level of memory performance on the Free and Cued Selective Reminding Test. Although biomarkers of early AD neuropathology predicted overall memory performance, cueing efficiency, which is frequently impaired in AD, demonstrated particularly strong relationships with cortical thickness of regions that are commonly atrophic in early AD.

Assessment of the influence of familial and genetic risk factors has also become an important tool for forecasting diagnostic status. The family high-risk approach allows a defined selection process for ascertaining non-ill subjects in a family in which there is an identified proband with the illness. An advantage of such an approach is that it is not dependent on symptom expression, but rather genetic risk, and thus an unaffected individual could be studied at any age, enabling developmentally guided probes of risk (Agnew-Blais & Seidman, 2013). The “unaffected relatives” are typically offspring or siblings who are considered to be at higher risk for the illness or for phenotypes associated with the illness, because they carry approximately 50% of the genes for the illness. This approach has been used for over half a century, and has been one of the most fruitful ways of identifying components of the vulnerability to various illnesses, particularly schizophrenia. The most typical outcome used in many of these studies originally was “developing the illness” (e.g., schizophrenia, AD, etc.). However, outcomes can also be expressed in a range of phenotypes reflecting the underlying disorder, and outcomes such as functional disability are also very important. A wide range of phenotypes (e.g., working memory or attention problems, smaller hippocampi) can be studied at different ages to evaluate developmental effects, and in different sub-populations (e.g., those with higher vs. lower genetic loading) to study the specific subgroup expression of the phenotypes.

In this issue, Lancaster and colleagues demonstrate that baseline diffusion tensor imaging of the white matter microstructure in the medial temporal lobe can predict longitudinal changes in episodic memory functioning over 3 years in a sample of cognitively healthy older adults with an enriched familial and genetic risk for AD. Koscik and colleagues compare sensitivity for predicting subsequent cognitive impairment using either variability in performance across cognitive tasks or combinations of outcomes from particular tasks (e.g., memory and executive tasks) taken at baseline several years earlier. In an investigation of neuropsychological endophenotypes of familial risk for schizophrenia and affective psychosis, Seidman and colleagues found that working memory impairment was more robust than vigilance for characterizing the cognitive impairment associated with familial risk for schizophrenia. Although persons with familial risk for affective psychosis showed more impaired vigilance relative to other groups, this effect was eliminated after adjustment for several psychopathological symptoms. This work was part of an agenda to identify the most sensitive and specific neuropsychological predictors of risk for different forms of psychosis (see also Seidman et al., 2016). Each of these studies demonstrates novel methodologies for studying the influence of familial and genetic risk for possible diagnosis and prognosis.

Finally, two articles in this issue focus on the use of prediction strategies for prognosticating outcome after brain injury has already occurred in pediatric samples. Ransom and colleagues use evidence-based assessment (EBA) to identify teenage students who are at-risk for post-concussive academic difficulty. Self-reported post-injury symptoms and executive functioning difficulty, rather than parent-reported sequelae, showed the strongest relationships with perceived post-injury academic difficulties. This study demonstrates the utility of the EBA framework within the context of neuropsychological assessment. Till and colleagues studied cognitive, academic, and psychosocial difficulties experienced by children diagnosed with an acquired demyelinating syndrome (ADS), one-third of whom were later diagnosed with multiple sclerosis (MS), over a 6-month follow-up period. Children with ADS were shown to demonstrate a favorable neurocognitive outcome in the short-term, including children diagnosed with MS.

In summary, the papers in this Special Issue present several novel approaches toward developing methodologies for prediction in neuropsychology. Research on optimizing the information obtained from biomarkers will undoubtedly continue to be stimulated by the identification of new biomarkers in the future. Introduction of new frameworks for assessment, such as EBA, and other strategies for evaluating longitudinal cognitive, clinical, and neuroimaging changes in outcome, as presented by several studies in this special issue, will also be helpful for moving the field forward. Capitalization on new developments in genetic analyses and assessment of familial risk factors will also be important tools for improving predictive accuracy.

Nevertheless, we also face challenges with respect to definition of appropriate statistical models used for assessment of change, growth, or decline (Cronbach & Furby, 1970; Francis, Fletcher, Stuebing, Davidson, & Thompson, 1991; Gottman & Rushe, 1993; Harrell, 2015; Singer & Willett, 2003; Steyerberg, 2009; Steyerberg & Harrell, 2016; Steyerberg et al., 2010; Temkin, Heaton, Grant, & Dikmen, 1999). While these issues are certainly not new, continued focus on improving definitions of the change that we are predicting, and on models for assessing the effectiveness of variables predicting this change, are certainly warranted. Despite these challenges, research on preclinical prediction continues to grow, and future studies promise to contribute to improvement in preventative treatments before cognitive decline occurs as well as to more effective treatments and allocation of resources following brain injury.

Individual Titles, Authors, and Articles:

Patterns of Cortical and Subcortical Amyloid Burden across Stages of Preclinical Alzheimer’s Disease
  • Emily C. Edmonds | Department of Psychiatry, University of California San Diego, School of Medicine, La Jolla, California
  • Katherine J. Bangen | Department of Psychiatry, University of California San Diego, School of Medicine, La Jolla, California, Veterans Affairs San Diego Healthcare System, San Diego, California
  • Lisa Delano-Wood | Department of Psychiatry, University of California San Diego, School of Medicine, La Jolla, California, Veterans Affairs San Diego Healthcare System, San Diego, California
  • Daniel A. Nation | Department of Psychology, University of Southern California, Los Angeles, California
  • Ansgar J. Furst | War Related Illness and Injury Study Center (WRIISC), VA Palo Alto Health Care System, Palo Alto, California, Depts. of Psychiatry and Behavioral Sciences and Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
  • David P. Salmon | Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, California
  • Mark W. Bondi | Department of Psychiatry, University of California San Diego, School of Medicine, La Jolla, California, Veterans Affairs San Diego Healthcare System, San Diego, California

E-mail address | ecedmonds@ucsd.edu

Dr. Salmon serves as a consultant for Bristol-Myers Squibb. The other authors report no disclosures.


We examined florbetapir positron emission tomography (PET) amyloid scans across stages of preclinical Alzheimer’s disease (AD) in cortical, allocortical, and subcortical regions. Stages were characterized using empirically defined methods.


A total of 312 cognitively normal Alzheimer’s Disease Neuroimaging Initiative participants completed a neuropsychological assessment and florbetapir PET scan. Participants were classified into stages of preclinical AD using (1) a novel approach based on the number of abnormal biomarkers/cognitive markers each individual possessed, and (2) National Institute on Aging and the Alzheimer’s Association (NIA-AA) criteria. Preclinical AD groups were compared to one another and to a mild cognitive impairment (MCI) sample on florbetapir standardized uptake value ratios (SUVRs) in cortical and allocortical/subcortical regions of interest (ROIs).


Amyloid deposition increased across stages of preclinical AD in all cortical ROIs, with SUVRs in the later stages reaching levels seen in MCI. Several subcortical areas showed a pattern of results similar to the cortical regions; however, SUVRs in the hippocampus, pallidum, and thalamus largely did not differ across stages of preclinical AD.


Substantial amyloid accumulation in cortical areas has already occurred before one meets criteria for a clinical diagnosis. Potential explanations for the unexpected pattern of results in some allocortical/subcortical ROIs include lack of correspondence between (1) cerebrospinal fluid and florbetapir PET measures of amyloid, or between (2) subcortical florbetapir PET SUVRs and underlying neuropathology. Findings support the utility of our novel method for staging preclinical AD. By combining imaging biomarkers with detailed cognitive assessment to better characterize preclinical AD, we can advance our understanding of who is at risk for future progression. (JINS, 2016,22, 978–990)

  1. Arriagada, P.V., Growdon, J.H., Hedley-Whyte, E.T., & Hyman, B.T. (1992). Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology, 42, 631–639. CrossRef  Google Scholar  PubMed 
  2. Balasubramanian, A.B., Kawas, C.H., Peltz, C.B., Brookmeyer, R., & Corrada, M.M. (2012). Alzheimer disease pathology and longitudinal cognitive performance in the oldest-old with no dementia. Neurology, 79(9), 915–921. doi: 10.1212/WNL.0b013e318266fc77 CrossRef  Google Scholar  PubMed 
  3. Bangen, K.J., Clark, A.L., Werhane, M., Edmonds, E., Nation, D.A., Evangelista, N., & Delano-Wood, L. (2016). Cortical amyloid burden in empirically-derived MCI subtypes. Journal of Alzheimer’s Disease, 52, 849–861. CrossRef  Google Scholar 
  4. Bateman, R.J., Xiong, C., Benzinger, T.L., Fagan, A.M., Goate, A., Fox, N.C., & Morris, J.C. (2012). Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. New England Journal of Medicine, 367(9), 795–804. doi: 10.1056/NEJMoa1202753 CrossRef  Google Scholar  PubMed 
  5. Beach, T.G., Thal, D.R., Zanette, M., Smith, A., & Buckley, C. (2016). Detection of striatal amyloid plaques with [18F]flutemetamol: Validation with postmortem histopathology. Journal of Alzheimer’s Disease, 52, 863–873. CrossRef  Google Scholar 
  6. Bennett, D.A., Schneider, J.A., Bienias, J.L., Evans, D.A., & Wilson, R.S. (2005). Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions. Neurology, 64(5), 834–841. doi: 10.1212/01.wnl.0000152982.47274.9e CrossRef  Google Scholar  PubMed 
  7. Bondi, M.W., Edmonds, E.C., Jak, A.J., Clark, L.R., Delano-Wood, L., McDonald, C.R., & Salmon, D.P. (2014). Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and prediction of progression. Journal of Alzheimer’s Disease, 42(1), 275–289. doi: 10.3233/JAD-140276 CrossRef  Google Scholar 
  8. Braak, H., & Braak, E. (1990). Alzheimer’s disease: Striatal amyloid deposits and neurofibrillary changes. Journal of Neuropathology and Experimental Neurology, 49(3), 215–224. CrossRef  Google Scholar  PubMed 
  9. Braak, H., & Del Tredici, K. (2015). The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain, 138(10), 2814–2833. doi: 10.1093/brain/awv236 CrossRef  Google Scholar  PubMed 
  10. Braak, H., Zetterberg, H., Del Tredici, K., & Blennow, K. (2013). Intraneuronal tau aggregation precedes diffuse plaque deposition, but amyloid-β changes occur before increases of tau in cerebrospinal fluid. Acta Neuropathologica, 126(5), 631–641. doi: 10.1007/s00401-013-1139-0 CrossRef  Google Scholar  PubMed 
  11. Brilliant, M.J., Elble, R.J., Ghobrial, M., & Struble, R.G. (1997). The distribution of amyloid beta protein deposition in the corpus striatum of patients with Alzheimer’s disease. Neuropathology and Applied Neurobiology, 23(4), 322–325. CrossRef  Google Scholar  PubMed 
  12. Chételat, G., La Joie, R., Villain, N., Perrotin, A., da La Sayette, V., Eustache, F., & Vandenberghe, R. (2013). Amyloid imaging in cognitively normal individuals, at-risk populations and preclinical Alzheimer’s disease. Neuroimage: Clinical, 2, 356–365. doi: 10.1016/j.nicl.2013.02.006 CrossRef  Google Scholar  PubMed 
  13. Cho, H., Seo, S.W., Kim, J.H., Suh, M.K., Lee, J.H., Choe, Y.S., & Na, D.L. (2013). Amyloid deposition in early onset versus late onset Alzheimer’s disease. Journal of Alzheimer’s Disease, 35(4), 813–821. doi: 10.3233/JAD-121927 CrossRef  Google Scholar  PubMed 
  14. Clark, C.M., Pontecorvo, M.J., Beach, T.G., Bedell, B.J., Coleman, R.E., Doraiswamy, P.M., & Skovronsky, D.M. (2012). Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-beta plaques: A prospective cohort study. Lancet Neurology, 11(8), 669–678. doi: 10.1016/s1474-4422(12)70142-4 CrossRef  Google Scholar  PubMed 
  15. Clark, L.R., Delano-Wood, L., Libon, D.J., McDonald, C.R., Nation, D.A., Bangen, K.J., & Bondi, M.W. (2013). Are empirically derived subtypes of mild cognitive impairment consistent with conventional subtypes? Journal of the International Neuropsychological Society, 19(6), 635–645. doi: 10.1017/S1355617713000313 CrossRef  Google Scholar  PubMed 
  16. Davis, D.G., Schmitt, F.A., Wekstein, D.R., & Markesbery, W.R. (1999). Alzheimer neuropathologic alterations in aged cognitively normal subjects. Journal of Neuropathology and Experimental Neurology, 58(4), 376–388. CrossRef  Google Scholar  PubMed 
  17. Edmonds, E.C., Delano-Wood, L., Clark, L.R., Jak, A.J., Nation, D.A., McDonald, C.R., & Bondi, M.W. (2015). Susceptibility of the conventional criteria for mild cognitive impairment to false positive diagnostic errors. Alzheimer’s & Dementia, 11(4), 415–424. doi: 10.1016/j.jalz.2014.03.005 CrossRef  Google Scholar  PubMed 
  18. Edmonds, E.C., Delano-Wood, L., Galasko, D.R., Salmon, D.P., & Bondi, M.W. (2015). Subtle cognitive decline and biomarker staging in preclinical Alzheimer’s Disease. Journal of Alzheimer’s Disease, 47(1), 231–242. doi: 10.3233/JAD-150128 CrossRef  Google Scholar  PubMed 
  19. Edmonds, E.C., Delano-Wood, L., Jak, A.J., Galasko, D.R., Salmon, D.P., & Bondi, M.W. (2016). “Missed” mild cognitive impairment: High false-negative error rate based on conventional diagnostic criteria. Journal of Alzheimer’s Disease, 52, 685–691. doi: 10.3233/JAD-150986 CrossRef  Google Scholar  PubMed 
  20. Edmonds, E.C., Eppig, J., Bondi, M.W., Leyden, K.M., Goodwin, B., Delano-Wood, L., & McDonald, C.R. (in press). Heterogeneous cortical atrophy patterns in MCI not captured by conventional diagnostic criteria. NeurologyGoogle Scholar 
  21. Eggert, L.D., Sommer, J., Jansen, A., Kircher, T., & Konrad, C. (2012). Accuracy and reliability of automated gray matter segmentation pathways on real and simulated structural magnetic resonance images of the human brain. PLoS One, 7, e45081. doi: 10.1371/journal.pone.0045081 CrossRef  Google Scholar  PubMed 
  22. Giannakopoulos, P., Hof, P.R., Michel, J.P., Guimon, J., & Bouras, C. (1997). Cerebral cortex pathology in aging and Alzheimer’s disease: A quantitative survey of large hospital-based geriatric and psychiatric cohorts. Brain Research Reviews, 25(2), 217–245. CrossRef  Google Scholar  PubMed 
  23. Hatsuta, H., Takao, M., Ishii, K., Ishiwata, K., Saito, Y., Kanemaru, K., & Murayama, S. (2015). Amyloid β accumulation assessed with 11C-Pittsburgh compound B PET and postmortem neuropathology. Current Alzheimer Research, 12(3), 278–286. CrossRef  Google Scholar 
  24. Ivnik, R.J., Malec, J.F., Smith, G.E., Tangalos, E.G., Petersen, R.C., Kokmen, E., & Kurland, L.T. (1992). Mayo’s older Americans normative studies: Updated AVLT norms for ages 56 to 97. Clinical Neuropsychologist, 6, 83–104. CrossRef  Google Scholar 
  25. Jack, C.R., Jr., Knopman, D.S., Jagust, W.J., Shaw, L.M., Aisen, P.S., Weiner, M.W., & Trojanowski, J.Q. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurology, 9(1), 119–128. doi: 10.1016/S1474-4422(09)70299-6 CrossRef  Google Scholar  PubMed 
  26. Jack, C.R. Jr., Knopman, D.S., Jagust, W.J., Petersen, R.C., Weiner, M.W., Aisen, P.S., & Trojanowski, J.Q. (2013). Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurology, 12(2), 207–216. doi: 10.1016/S1474-4422(12)70291-0 CrossRef  Google Scholar  PubMed 
  27. Jack, C.R. Jr., Knopman, D.S., Weigand, S.D., Wiste, H.J., Vemuri, P., Lowe, V., & Petersen, R.C. (2012). An operational approach to National Institute on Aging-Alzheimer’s Association criteria for preclinical Alzheimer disease. Annals of Neurology, 71(6), 765–775. doi: 10.1002/ana.22628 CrossRef  Google Scholar  PubMed 
  28. Jack, C.R., Jr., Wiste, H.J., Weigand, S.D., Knopman, D.S., Lowe, V., Vemuri, P., & Petersen, R.C. (2013). Amyloid-first and neurodegeneration-first profiles characterize incident amyloid PET positivity. Neurology, 81(20), 1732–1740. doi: 10.1212/01.wnl.0000435556.21319.e4 CrossRef  Google Scholar  PubMed 
  29. Jagust, W.J., Landau, S.M., Shaw, L.M., Trojanowski, J.Q., Koeppe, R.A., Reiman, E.M., & Mathis, C.A. (2009). Relationships between biomarkers in aging and dementia. Neurology, 73(15), 1193–1199. CrossRef  Google Scholar  PubMed 
  30. Jak, A.J., Bondi, M.W., Delano-Wood, L., Wierenga, C., Corey-Bloom, J., Salmon, D.P., & Delis, D.C. (2009). Quantification of five neuropsychological approaches to defining mild cognitive impairment. American Journal of Geriatric Psychiatry, 17(5), 368–375. doi: 10.1097/JGP.0b013e31819431d5 CrossRef  Google Scholar  PubMed 
  31. Jansen, W.J., Ossenkoppele, R., Knol, D.L., Tijms, B.M., Scheltens, P., Verhey, F.R., & Zetterberg, H. (2015). Prevalence of cerebral amyloid pathology in persons without dementia: A meta-analysis. Journal of the American Medical Association, 313(19), 1924–1938. doi: 10.1001/jama.2015.4668 CrossRef  Google Scholar  PubMed 
  32. Jedynak, B.M., Lang, A., Liu, B., Katz, E., Zhang, Y., Wyman, B.T., & Prince, J.L. (2012). A computational neurodegenerative disease progression score: Method and results with the Alzheimer’s disease neuroimaging initiative cohort. Neuroimage, 63(3), 1478–1486. doi: 10.1016/j.neuroimage.2012.07.059 CrossRef  Google Scholar  PubMed 
  33. Joshi, A.D., Pontecorvo, M.J., Clark, C.M., Carpenter, A.P., Jennings, D.L., Sadowsky, C.H., & Skovronsky, D.M. (2012). Performance characteristics of amyloid PET with florbetapir F 18 in patients with Alzheimer’s disease and cognitively normal subjects. Journal of Nuclear Medicine, 53(3), 378–384. doi: 10.2967/jnumed.111.090340 CrossRef  Google Scholar  PubMed 
  34. Klunk, W.E., Price, J.C., Mathis, C.A., Tsopelas, N.D., Lopresti, B.J., Ziolko, S.K., & DeKosky, S.T. (2007). Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. Journal of Neuroscience, 27(23), 6174–6184. CrossRef  Google Scholar  PubMed 
  35. Knopman, D.S., Jack, C.R. Jr., & Wiste, H.J. (2012). Short-term clinical outcomes for stages of NIA-AA preclinical Alzheimer disease. Neurology, 78(20), 1576–1582. doi: 10.1212/WNL.0b013e3182563bbe CrossRef  Google Scholar  PubMed 
  36. Landau, S.M., Breault, C., Joshi, A.D., Pontecorvo, M., Mathis, C.A., Jagust, W.J., & Mintun, M.A. (2013). Amyloid-beta imaging with Pittsburgh compound B and florbetapir: Comparing radiotracers and quantification methods. Journal of Nuclear Medicine, 54(1), 70–77. doi: 10.2967/jnumed.112.109009 CrossRef  Google Scholar  PubMed 
  37. Landau, S.M., Harvey, D., Madison, C.M., Reiman, E.M., Foster, N.L., Aisen, P.S., & Jagust, W.J. (2010). Comparing predictors of conversion and decline in mild cognitive impairment. Neurology, 75(3), 230–238. doi: 10.1212/WNL.0b013e3181e8e8b8 CrossRef  Google Scholar  PubMed 
  38. Landau, S.M., Lu, M., Joshi, A.D., Pontecorvo, M., Mintun, M.A., Trojanowski, J.Q., & Shaw, L.M. (2013). Comparing PET imaging and CSF measurements in Aβ. Annals of Neurology, 74(6), 826–836. doi: 10.1002/ana.23908 CrossRef  Google Scholar 
  39. Leinonen, V., Alafuzoff, I., Aalto, S., Suotunen, T., Savolainen, S., Nagren, K., & Rinner, J.O. (2008). Assessment of beta-amyloid in a frontal cortical brain biopsy specimen and by positron emission tomography with carbon 11-labeled Pittsburgh Compound B. Archives of Neurology, 65(10), 1304–1309. CrossRef  Google Scholar 
  40. Leuzy, A., Zimmer, E.R., Heurling, K., Rosa-Neto, P., & Gauthier, S. (2014). Use of amyloid PET across the spectrum of Alzheimer’s disease: Clinical utility and associated ethical issues. Amyloid, 21(3), 143–148. doi: 10.3109/13506129.2014.926267 CrossRef  Google Scholar  PubMed 
  41. Mormino, E.C., Kluth, J.T., Madison, C.M., Rabinovici, G.D., Baker, S.L., Miller, B.L., & Jagust, M.J. (2009). Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects. Brain, 132, 1310–1323. CrossRef  Google Scholar  PubMed 
  42. Nettiksimmons, J., Beckett, L., Schwarz, C., Carmichael, O., Fletcher, E., & Decarli, C. (2013). Subgroup of ADNI normal controls characterized by atrophy and cognitive decline associated with vascular damage. Psychology and Aging, 28, 191–201. doi: 10.1037/a0031063 CrossRef  Google Scholar  PubMed 
  43. Petersen, R.C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256, 183–194. CrossRef  Google Scholar  PubMed 
  44. Petersen, R.C., Aisen, P.S., Beckett, L.A., Donohue, M.C., Gamst, A.C., Harvey, D.J., & Weiner, M.W. (2010). Alzheimer’s Disease Neuroimaging Initiative (ADNI): Clinical characterization. Neurology, 74(3), 201–209. doi: 10.1212/WNL.0b013e3181cb3e25 CrossRef  Google Scholar 
  45. Price, J.L., Davis, P.B., Morris, J.C., & White, D.L. (1991). The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiology of Aging, 12(4), 295–312. CrossRef  Google Scholar  PubMed 
  46. Price, J.L., McKeel, D.W., Jr., Buckles, V.D., Roe, C.M., Xiong, C., Grundman, M., & Morris, J.C. (2009). Neuropathology of nondemented aging: Presumptive evidence for preclinical Alzheimer disease. Neurobiology of Aging, 30(7), 1026–1036. CrossRef  Google Scholar  PubMed 
  47. Rodrigue, K.M., Kennedy, K.M., Devous, M.D. Sr., Rieck, J.R., Hebrank, A.C., Diaz-Arrastia, R., & Park, D.C. (2012). β-Amyloid burden in healthy aging: Regional distribution and cognitive consequences. Neurology, 78(6), 387–395. doi: 10.1212/WNL.0b013e318245d295 CrossRef  Google Scholar  PubMed 
  48. Rowe, C.C., Ng, S., Ackermann, U., Gong, S.J., Pike, K., Savage, G., & Villemagne, V.L. (2007). Imaging beta-amyloid burden in aging and dementia. Neurology, 68(20), 1718–1725. doi: 10.1212/01.wnl.0000261919.22630.ea CrossRef  Google Scholar  PubMed 
  49. Royston, P., Altman, D.G., & Sauerbrei, W. (2006). Dichotomizing continuous predictors in multiple regression: A bad idea. Statistics in Medicine, 25, 127–141. CrossRef  Google Scholar  PubMed 
  50. Shaw, L.M., Vanderstichele, H., Knapik-Czajka, M., Clark, C.M., Aisen, P.S., Petersen, R.C., & Trojanowski, J.Q. (2009). Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Annals of Neurology, 65(4), 403–413. doi: 10.1002/ana.21610 CrossRef  Google Scholar  PubMed 
  51. Shirk, S.D., Mitchell, M.B, Shaughnessy, L.W., Sherman, J.C., Locascio, J.J., Weintraub, S., & Atri, A. (2011). A web-based normative calculator for the uniform data set (UDS) neuropsychological test battery. Alzheimer’s Research & Therapy, 3(6), 32. doi: 10.1186/alzrt94 CrossRef  Google Scholar  PubMed 
  52. Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M., & Phelps, C.H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7, 280–292. doi: 10.1016/j.jalz.2011.03.003 CrossRef  Google Scholar  PubMed 
  53. Sperling, R., Mormino, E., & Johnson, K. (2014). The evolution of preclinical Alzheimer’s disease: Implications for prevention trials. Neuron, 84(3), 608–622. doi: 10.1016/j.neuron.2014.10.038 CrossRef  Google Scholar  PubMed 
  54. Suenaga, T., Hirano, A., Llena, J.F, Yen, S.H., & Dickson, D.W. (1990). Modified Bielschowsky stain and immunohistochemical studies on striatal plaques in Alzheimer’s disease. Acta Neuropathologica, 80(3), 280–286. CrossRef  Google Scholar  PubMed 
  55. Thal, D.R., Rüb, U., Orantes, M., & Braak, H. (2002). Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology, 58(12), 1791–2000. CrossRef  Google Scholar  PubMed 
  56. Toledo, J.B., Bjerke, M., Da, X., Landau, S.M., Foster, N.L., Jagust, W., & Trojanowski, J.Q. (2015). Nonlinear association between cerebrospinal fluid and florbetapir F-18 β-amyloid measures across the spectrum of Alzheimer disease. JAMA Neurology, 72(5), 571–581. CrossRef  Google Scholar  PubMed 
  57. Toledo, J.B., Cairns, N.J., Da, X., Chen, K., Carter, D., Fleisher, A., & Trojanoswki, J.Q. (2013). Clinical and multimodal biomarker correlates of ADNI neuropathological findings. Acta Neuropathologica Communications, 1, 65. doi: 10.1186/2051-5960-1-65 CrossRef  Google Scholar  PubMed 
  58. Toledo, J.B., Weiner, M.W., Wolk, D.A., Da, X., Chen, K., Arnold, S.E., & Trojanowski, J.Q. (2014). Neuronal injury biomarkers and prognosis in ADNI subjects with normal cognition. Acta Neuropathologica Communications, 2, 26. CrossRef  Google Scholar  PubMed 
  59. Weintraub, S., Salmon, D., Mercaldo, N., Ferris, S., Graff-Radford, N.R., Chui, H., & Morris, J.C. (2009). The Alzheimer’s disease centers’ uniform data set (UDS): The neuropsychologic test battery. Alzheimer Disease and Associated Disorders, 23(2), 91–101. doi: 10.1097/WAD.0b013e318191c7dd CrossRef  Google Scholar  PubMed 
Prediction of Free and Cued Selective Reminding Test performance using volumetric and amyloid-based biomarkers of Alzheimer’s disease
  • Lisa Quenon | Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
  • Laurence Dricot | Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
  • John L. Woodard | Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium, Psychology Department, Wayne State University, Detroit, Michigan
  • Bernard Hanseeuw | Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium, Neurology Department, Saint Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium, Neurology Department, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
  • Nathalie Gilis | Neurosurgery Department, Citadelle Regional Hospital Center, Liège, Belgium
  • Renaud Lhommel | Nuclear Medicine Department, Saint Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
  • Adrian Ivanoiu | Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium, Neurology Department, Saint Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium

E-mail address | lisa.quenon@uclouvain.be

The authors do not have any potential conflict of interest to declare.


Relatively few studies have investigated relationships between performance on clinical memory measures and indexes of underlying neuropathology related to Alzheimer’s disease (AD). This study investigated predictive relationships between Free and Cued Selective Reminding Test (FCSRT) cue efficiency (CE) and free-recall (FR) measures and brain amyloid levels, hippocampal volume (HV), and regional cortical thickness.


Thirty-one older controls without memory complaints and 60 patients presenting memory complaints underwent the FCSRT, amyloid imaging using [F18]-flutemetamol positron emission tomography, and surface-based morphometry (SBM) using brain magnetic resonance imaging. Three groups were considered: patients with high (Aβ+P) and low (Aβ− P) amyloid load and controls with low amyloid load (Aβ− C).


Aβ+P showed lower CE than both Aβ− groups, but the Aβ− groups did not differ significantly. In contrast, FR discriminated all groups. SBM analyses revealed that CE indexes were correlated with the cortical thickness of a wider set of left-lateralized temporal and parietal regions than FR. Regression analyses demonstrated that amyloid load and left HV independently predicted FCSRT scores. Moreover, CE indexes were predicted by the cortical thickness of some regions involved in early AD, such as the entorhinal cortex.


Compared to FR measures, CE indexes appear to be more specific for differentiating persons on the basis of amyloid load. Both CE and FR performance were predicted independently by brain amyloid load and reduced left HV. However, CE performance was also predicted by the cortical thickness of regions known to be atrophic early in AD. (JINS, 2016,22, 991–1004)

  1. Ahn, H. J., Seo, S. W., Chin, J., Suh, M. K., Lee, B. H., Kim, S. T., & Na, D. L. (2011). The cortical neuroanatomy of neuropsychological deficits in mild cognitive impairment and Alzheimer’s disease: A surface-based morphometric analysis. Neuropsychologia, 49(14), 3931–3945. doi:10.1016/j.neuropsychologia.2011.10.010 CrossRef  Google Scholar  PubMed 
  2. Albert, M. S. (1996). Cognitive and neurobiologic markers of early Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13547–13551. CrossRef  Google Scholar  PubMed 
  3. Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., & Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 270–279. doi:10.1016/j.jalz.2011.03.008 CrossRef  Google Scholar 
  4. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders: DSM-IV-TR (4th Ed.). Washington, DC: American Psychiatric Association. Google Scholar  PubMed 
  5. Atienza, M., Atalaia-Silva, K. C., Gonzalez-Escamilla, G., Gil-Neciga, E., Suarez-Gonzalez, A., & Cantero, J. L. (2011). Associative memory deficits in mild cognitive impairment: The role of hippocampal formation. Neuroimage, 57(4), 1331–1342. doi:10.1016/j.neuroimage.2011.05.047 CrossRef  Google Scholar  PubMed 
  6. Becker, J. A., Hedden, T., Carmasin, J., Maye, J., Rentz, D. M., Putcha, D., & Johnson, K. A. (2011). Amyloid-beta associated cortical thinning in clinically normal elderly. Annals of Neurology, 69(6), 1032–1042. doi:10.1002/ana.22333 CrossRef  Google Scholar  PubMed 
  7. Blennow, K., Mattsson, N., Scholl, M., Hansson, O., & Zetterberg, H. (2015). Amyloid biomarkers in Alzheimer’s disease. Trends in Pharmacological Sciences, 36(5), 297–309. doi:10.1016/j.tips.2015.03.002 CrossRef  Google Scholar  PubMed 
  8. Bonner-Jackson, A., Mahmoud, S., Miller, J., & Banks, S. J. (2015). Verbal and non-verbal memory and hippocampal volumes in a memory clinic population. Alzheimer’s Research & Therapy, 7(1), 61. doi:10.1186/s13195-015-0147-9 CrossRef  Google Scholar 
  9. Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropatholigica, 82(4), 239–259. CrossRef  Google Scholar  PubMed 
  10. Carlesimo, G. A., Perri, R., & Caltagirone, C. (2011). Category cued recall following controlled encoding as a neuropsychological tool in the diagnosis of Alzheimer’s disease: A review of the evidence. Neuropsychology Review, 21(1), 54–65. doi:10.1007/s11065-010-9153-7 CrossRef  Google Scholar 
  11. Chen, P., Ratcliff, G., Belle, S. H., Cauley, J. A., DeKosky, S. T., & Ganguli, M. (2000). Cognitive tests that best discriminate between presymptomatic AD and those who remain nondemented. Neurology, 55(12), 1847–1853. CrossRef  Google Scholar  PubMed 
  12. Crary, J. F., Trojanowski, J. Q., Schneider, J. A., Abisambra, J. F., Abner, E. L., Alafuzoff, I., & Nelson, P. T. (2014). Primary age-related tauopathy (PART): A common pathology associated with human aging. Acta Neuropatholigica, 128(6), 755–766. doi:10.1007/s00401-014-1349-0 CrossRef  Google Scholar  PubMed 
  13. Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968–980. doi:10.1016/j.neuroimage.2006.01.021 CrossRef  Google Scholar  PubMed 
  14. Dickerson, B. C., Bakkour, A., Salat, D. H., Feczko, E., Pacheco, J., Greve, D. N., & Buckner, R. L. (2009). The cortical signature of Alzheimer’s disease: Regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cerebral Cortex, 19(3), 497–510. doi:10.1093/cercor/bhn113 CrossRef  Google Scholar  PubMed 
  15. Dickerson, B. C., Feczko, E., Augustinack, J. C., Pacheco, J., Morris, J. C., Fischl, B., & Buckner, R. L. (2009). Differential effects of aging and Alzheimer’s disease on medial temporal lobe cortical thickness and surface area. Neurobiology of Aging, 30(3), 432–440. doi:10.1016/j.neurobiolaging.2007.07.022 CrossRef  Google Scholar  PubMed 
  16. Dickerson, B. C., Fenstermacher, E., Salat, D. H., Wolk, D. A., Maguire, R. P., Desikan, R., & Fischl, B. (2008). Detection of cortical thickness correlates of cognitive performance: Reliability across MRI scan sessions, scanners, and field strengths. Neuroimage, 39(1), 10–18. doi:10.1016/j.neuroimage.2007.08.042 CrossRef  Google Scholar  PubMed 
  17. Dierckx, E., Engelborghs, S., De Raedt, R., Van Buggenhout, M., De Deyn, P. P., Verte, D., & Ponjaert-Kristoffersen, I. (2009). Verbal cued recall as a predictor of conversion to Alzheimer’s disease in mild cognitive impairment. International Journal of Geriatric Psychiatry, 24(10), 1094–1100. doi:10.1002/gps.2228 CrossRef  Google Scholar  PubMed 
  18. Dore, V., Villemagne, V. L., Bourgeat, P., Fripp, J., Acosta, O., Chetelat, G., & Rowe, C. C. (2013). Cross-sectional and longitudinal analysis of the relationship between Abeta deposition, cortical thickness, and memory in cognitively unimpaired individuals and in Alzheimer disease. JAMA Neurology, 70(7), 903–911. doi:10.1001/jamaneurol.2013.1062 CrossRef  Google Scholar  PubMed 
  19. Dubois, B., Feldman, H. H., Jacova, C., Dekosky, S. T., Barberger-Gateau, P., Cummings, J., & Scheltens, P. (2007). Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurology, 6(8), 734–746. doi:10.1016/S1474-4422(07)70178-3 CrossRef  Google Scholar 
  20. Ferguson, C. J. (2009). An effect size primer: A guide for clinicians and researchers. Professional Psychology: Research and Practice, 40(5), 532–538. doi:10.1037/a0015808 CrossRef  Google Scholar 
  21. Fischl, B., Salat, D. H., van der Kouwe, A. J., Makris, N., Segonne, F., Quinn, B. T., & Dale, A. M. (2004). Sequence-independent segmentation of magnetic resonance images. Neuroimage, 23(Suppl 1), S69–S84. doi:10.1016/j.neuroimage.2004.07.016 CrossRef  Google Scholar  PubMed 
  22. Frisoni, G. B., Prestia, A., Zanetti, O., Galluzzi, S., Romano, M., Cotelli, M., &Geroldi, C. (2009). Markers of Alzheimer’s disease in a population attending a memory clinic. Alzheimer’s & Dementia, 5(4), 307–317. doi:10.1016/j.jalz.2009.04.1235 CrossRef  Google Scholar 
  23. Grober, E., & Buschke, H. (1987). Genuine memory deficits in dementia. Developmental Neuropsychology, 3, 13–36. CrossRef  Google Scholar 
  24. Grober, E., Lipton, R. B., Hall, C., & Crystal, H. (2000). Memory impairment on free and cued selective reminding predicts dementia. Neurology, 54(4), 827–832. CrossRef  Google Scholar  PubMed 
  25. Grober, E., Sanders, A. E., Hall, C., & Lipton, R. B. (2010). Free and cued selective reminding identifies very mild dementia in primary care. Alzheimer Disease & Associated Disorders, 24(3), 284–290. doi:10.1097/WAD.0b013e3181cfc78b Google Scholar  PubMed 
  26. Hanseeuw, B., Dricot, L., Kavec, M., Grandin, C., Seron, X., & Ivanoiu, A. (2011). Associative encoding deficits in amnestic mild cognitive impairment: A volumetric and functional MRI study. Neuroimage, 56(3), 1743–1748. doi:10.1016/j.neuroimage.2011.03.034 CrossRef  Google Scholar  PubMed 
  27. Hurtz, S., Woo, E., Kebets, V., Green, A. E., Zoumalan, C., Wang, B., & Apostolova, L. G. (2014). Age effects on cortical thickness in cognitively normal elderly individuals. Dementia & Geriatric Cognitive Disorders Extra, 4(2), 221–227. doi:10.1159/000362872 CrossRef  Google Scholar 
  28. Ivanoiu, A., Adam, S., Van der Linden, M., Salmon, E., Juillerat, A. C., Mulligan, R., & Seron, X. (2005). Memory evaluation with a new cued recall test in patients with mild cognitive impairment and Alzheimer’s disease. Journal of Neurology, (1), 47–55. doi:10.1007/s00415-005-0597-2 CrossRef  Google Scholar  PubMed 
  29. Ivanoiu, A., Dricot, L., Gilis, N., Grandin, C., Lhommel, R., Quenon, L., &Hanseeuw, B. (2015). Classification of non-demented patients attending a memory clinic using the new diagnostic criteria for Alzheimer’s disease with disease-related biomarkers. Journal of Alzheimer’s Disease, 43(3), 835–847. doi:10.3233/JAD-140651 Google Scholar  PubMed 
  30. Jack, C. R. Jr. (2014). PART and SNAP. Acta Neuropatholigica, 128(6), 773–776. doi:10.1007/s00401-014-1362-3 CrossRef  Google Scholar  PubMed 
  31. Jack, C. R. Jr., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P. S., & Trojanowski, J. Q. (2013). Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurology, 12(2), 207–216. doi:10.1016/S1474-4422(12)70291-0 CrossRef  Google Scholar  PubMed 
  32. Jack, C. R. Jr., Lowe, V. J., Senjem, M. L., Weigand, S. D., Kemp, B. J., Shiung, M. M., & Petersen, R. C. (2008). 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain, 131(Pt 3), 665–680. doi:10.1093/brain/awm336 CrossRef  Google Scholar 
  33. Jongbloed, W., Bruggink, K. A., Kester, M. I., Visser, P. J., Scheltens, P., Blankenstein, M. A., & Veerhuis, R. (2015). Amyloid-beta oligomers relate to cognitive decline in Alzheimer’s disease. Journal of Alzheimer’s Disease, 45(1), 35–43. doi:10.3233/JAD-142136 Google Scholar 
  34. Lemaitre, H., Goldman, A. L., Sambataro, F., Verchinski, B. A., Meyer-Lindenberg, A., Weinberger, D. R., &Mattay, V. S. (2012). Normal age-related brain morphometric changes: Nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiology of Aging, 33(3), 617.e1–9. doi:10.1016/j.neurobiolaging.2010.07.013 CrossRef  Google Scholar  PubMed 
  35. Lerch, J. P., Pruessner, J. C., Zijdenbos, A., Hampel, H., Teipel, S. J., & Evans, A. C. (2005). Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cerebral Cortex, 15(7), 995–1001. doi:10.1093/cercor/bhh200 CrossRef  Google Scholar  PubMed 
  36. Llado-Saz, S., Atienza, M., & Cantero, J. L. (2015). Increased levels of plasma amyloid-beta are related to cortical thinning and cognitive decline in cognitively normal elderly subjects. Neurobiology of Aging, 36(10), 2791–2797. doi:10.1016/j.neurobiolaging.2015.06.023 CrossRef  Google Scholar  PubMed 
  37. Markesbery, W. R. (2010). Neuropathologic alterations in mild cognitive impairment: A review. Journal of Alzheimer’s Disease, 19(1), 221–228. doi:10.3233/JAD-2010-1220 CrossRef  Google Scholar 
  38. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34(7), 939–944. CrossRef  Google Scholar  PubMed 
  39. Mormino, E. C., Kluth, J. T., Madison, C. M., Rabinovici, G. D., Baker, S. L., Miller, B. L., … Alzheimer’s Disease Neuroimaging Initiative. (2009). Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects. Brain, 132(Pt 5), 1310–1323. doi:10.1093/brain/awn320 CrossRef  Google Scholar  PubMed 
  40. Myers, R. (1990). Classical and modern regression with application(2nd Ed.). Boston, MA: Duxbury Press. Google Scholar 
  41. Nho, K., Risacher, S. L., Crane, P. K., DeCarli, C., Glymour, M. M., & Habeck, C., … Alzheimer’s Disease Neuroimaging Initiative. (2012). Voxel and surface-based topography of memory and executive deficits in mild cognitive impairment and Alzheimer’s disease. Brain Imaging and Behavior, 6(4), 551–567. doi:10.1007/s11682-012-9203-2 CrossRef  Google Scholar  PubMed 
  42. Ong, K., Villemagne, V. L., Bahar-Fuchs, A., Lamb, F., Chetelat, G., Raniga, P., & Rowe, C. C. (2013). (18)F-florbetaben Abeta imaging in mild cognitive impairment. Alzheimer’s Research & Therapy, 5(1), 4. doi:10.1186/alzrt158 CrossRef  Google Scholar 
  43. Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183–194. doi:10.1111/j.1365-2796.2004.01388.x CrossRef  Google Scholar  PubMed 
  44. Pillon, B., Deweer, B., Michon, A., Malapani, C., Agid, Y., & Dubois, B. (1994). Are explicit memory disorders of progressive supranuclear palsy related to damage to striatofrontal circuits? Comparison with Alzheimer’s, Parkinson’s, and Huntington’s diseases. Neurology, 44(7), 1264–1270. CrossRef  Google Scholar  PubMed 
  45. R Development Core Team. (2015). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Google Scholar  PubMed 
  46. Rabinovici, G. D., & Jagust, W. J. (2009). Amyloid imaging in aging and dementia: Testing the amyloid hypothesis in vivo. Behavioral Neurology, 21(1), 117–128. doi:10.3233/BEN-2009-0232 CrossRef  Google Scholar 
  47. Rami, L., Fortea, J., Bosch, B., Sole-Padulles, C., Llado, A., Iranzo, A., & Molinuevo, J. L. (2011). Cerebrospinal fluid biomarkers and memory present distinct associations along the continuum from healthy subjects to AD patients. Journal of Alzheimer’s Disease, 23(2), 319–326. doi:10.3233/JAD-2010-101422 Google Scholar  PubMed 
  48. Rami, L., Sole-Padulles, C., Fortea, J., Bosch, B., Llado, A., Antonell, A., & Molinuevo, J. L. (2012). Applying the new research diagnostic criteria: MRI findings and neuropsychological correlations of prodromal AD. International Journal of Geriatric Psychiatry, 27(2), 127–134. doi:10.1002/gps.2696 CrossRef  Google Scholar  PubMed 
  49. Saka, E., Mihci, E., Topcuoglu, M. A., & Balkan, S. (2006). Enhanced cued recall has a high utility as a screening test in the diagnosis of Alzheimer’s disease and mild cognitive impairment in Turkish people. Archives of Clinical Neuropsychology, 21(7), 745–751. doi:10.1016/j.acn.2006.08.007 CrossRef  Google Scholar 
  50. Sarazin, M., Berr, C., De Rotrou, J., Fabrigoule, C., Pasquier, F., Legrain, S., & Dubois, B. (2007). Amnestic syndrome of the medial temporal type identifies prodromal AD: A longitudinal study. Neurology, 69(19), 1859–1867. doi:10.1212/01.wnl.0000279336.36610.f7 CrossRef  Google Scholar  PubMed 
  51. Sarazin, M., Chauvire, V., Gerardin, E., Colliot, O., Kinkingnehun, S., de Souza, L. C., & Dubois, B. (2010). The amnestic syndrome of hippocampal type in Alzheimer’s disease: An MRI study. Journal of Alzheimer’s Disease, 22(1), 285–294. doi:10.3233/JAD-2010-091150 CrossRef  Google Scholar  PubMed 
  52. Sperling, R. (2007). Functional MRI studies of associative encoding in normal aging, mild cognitive impairment, and Alzheimer’s disease. Annals of the New York Academy of Sciences, 1097, 146–155. doi:10.1196/annals.1379.009 CrossRef  Google Scholar 
  53. Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., & Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 280–292. doi:10.1016/j.jalz.2011.03.003 CrossRef  Google Scholar 
  54. Stevens, J. P. (2002). Applied multivariate statistics for the social sciences (4th Ed.). Mahwah, NJ: Lawrence Erlbaum Associates. Google Scholar 
  55. Thambisetty, M., Wan, J., Carass, A., An, Y., Prince, J. L., & Resnick, S. M. (2010). Longitudinal changes in cortical thickness associated with normal aging. Neuroimage, 52(4), 1215–1223. doi:10.1016/j.neuroimage.2010.04.258 CrossRef  Google Scholar  PubMed 
  56. Tounsi, H., Deweer, B., Ergis, A. M., Van der Linden, M., Pillon, B., Michon, A., & Dubois, B. (1999). Sensitivity to semantic cuing: An index of episodic memory dysfunction in early Alzheimer disease. Alzheimer Disease & Associated Disorders, 13(1), 38–46. CrossRef  Google Scholar  PubMed 
  57. Trojanowski, J. Q., Vandeerstichele, H., Korecka, M., Clark, C. M., Aisen, P. S., Petersen, R. C., … Alzheimer’s Disease Neuroimaging Initiative. (2010). Update on the biomarker core of the Alzheimer’s Disease Neuroimaging Initiative subjects. Alzheimer’s & Dementia, 6(3), 230–238. doi:10.1016/j.jalz.2010.03.008 CrossRef  Google Scholar  PubMed 
  58. Troyer, A. K., Murphy, K. J., Anderson, N. D., Craik, F. I., Moscovitch, M., Maione, A., &Gao, F. (2012). Associative recognition in mild cognitive impairment: Relationship to hippocampal volume and apolipoprotein E. Neuropsychologia, 50(14), 3721–3728. doi:10.1016/j.neuropsychologia.2012.10.018 CrossRef  Google Scholar  PubMed 
  59. Troyer, A. K., Murphy, K. J., Anderson, N. D., Hayman-Abello, B. A., Craik, F. I., & Moscovitch, M. (2008). Item and associative memory in amnestic mild cognitive impairment: Performance on standardized memory tests. Neuropsychology, 22(1), 10–16. doi:10.1037/0894-4105.22.1.10 CrossRef  Google Scholar  PubMed 
  60. Van der Linden, M., Coyette, F., Poitrenaud, J., Kalafat, M., Calicis, F., Wyns, C., … GRENEM. (2004). L’épreuve de rappel libre/rappel indicé à 16 items (RL/RI-16). In M. Van der Linden, S. Adam, A. Agniel, C. Baisset Mouly, F. Bardet, F. Coyette, B. Desgranges, B. Deweer, A.-M. Ergis, M.-C. Gély-Nargeot, L. Grimomprez, A. C. Juillerat, M. Kalafat, J. Poitrenaud, F. Sellal, & C. Thomas-Antérion (Eds.), L’évaluation des troubles de la mémoire. Présentation de quatre tests de mémoire épisodique (avec leur étalonnage). Marseille: Solal. Google Scholar 
  61. Vandenberghe, R., Van Laere, K., Ivanoiu, A., Salmon, E., Bastin, C., Triau, E., & Brooks, D. J. (2010). 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: A phase 2 trial. Annals of Neurology, 68(3), 319–329. doi:10.1002/ana.22068 CrossRef  Google Scholar 
  62. Villemagne, V. L., Burnham, S., Bourgeat, P., Brown, B., Ellis, K. A., Salvado, O., … Australian Lifestyle Research Group. (2013). Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: A prospective cohort study. Lancet Neurology, 12(4), 357–367. doi:10.1016/S1474-4422(13)70044-9 CrossRef  Google Scholar 
  63. Villemagne, V. L., Pike, K. E., Chetelat, G., Ellis, K. A., Mulligan, R. S., Bourgeat, P., & Rowe, C. C. (2011). Longitudinal assessment of Abeta and cognition in aging and Alzheimer disease. Annals of Neurology, 69(1), 181–192. doi:10.1002/ana.22248 CrossRef  Google Scholar  PubMed 
  64. Wagner, M., Wolf, S., Reischies, F. M., Daerr, M., Wolfsgruber, S., Jessen, F., & Wiltfang, J. (2012). Biomarker validation of a cued recall memory deficit in prodromal Alzheimer disease. Neurology, 78(6), 379–386. doi:10.1212/WNL.0b013e318245f447 CrossRef  Google Scholar  PubMed 
  65. Wisse, L. E., Butala, N., Das, S. R., Davatzikos, C., Dickerson, B. C., Vaishnavi, S. N., … Alzheimer’s Disease Neuroimaging Initiative. (2015). Suspected non-AD pathology in mild cognitive impairment. Neurobiolology of Aging, 36(12), 3152–3162. doi:10.1016/j.neurobiolaging.2015.08.029 CrossRef  Google Scholar  PubMed 
  66. Xie, J., Gabelle, A., Dorey, A., Garnier-Crussard, A., Perret-Liaudet, A., Delphin-Combe, F., & Krolak-Salmon, P. (2014). Initial memory deficit profiles in patients with a cerebrospinal fluid Alzheimer’s disease signature. Journal of Alzheimer’s Disease, 41(4), 1109–1116. doi:10.3233/JAD-131916 Google Scholar  PubMed 
Computerized Cognitive Tests Are Associated with Biomarkers of Alzheimer’s Disease in Cognitively Normal Individuals 10 Years Prior
  • Anja Soldan | Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
  • Corinne Pettigrew | Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
  • Abhay Moghekar | Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
  • Marilyn Albert | Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland

E-mail address | asoldan1@jhmi.edu

Dr. Soldan reports no disclosures. Dr. Pettigrew reports no disclosures. Dr. Moghekar reports no disclosures. Dr. Albert is an advisor to Eli Lilly. Drs. Soldan and Pettigrew contributed equally to this manuscript.


Evidence suggests that Alzheimer’s disease (AD) biomarkers become abnormal many years before the emergence of clinical symptoms of AD, raising the possibility that biomarker levels measured in cognitively normal individuals would be associated with cognitive performance many years later. This study examined whether performance on computerized cognitive tests is associated with levels of cerebrospinal fluid (CSF) biomarkers of amyloid, tau, and phosphorylated tau (p-tau) obtained approximately 10 years earlier, when individuals were cognitively normal and primarily middle-aged.


Individuals from the BIOCARD cohort (mean age at testing=69 years) were tested on two computerized tasks hypothesized to rely on brain regions affected by the early accumulation of AD pathology: (1) a Paired Associates Learning (PAL) task (n=67) and (2) a visual search task (n=86).


In regression analyses, poorer performance on the PAL task was associated with higher levels of CSF p-tau obtained years earlier, whereas worse performance in the visual search task was associated with lower levels of CSF Aβ1-42.


These findings suggest that AD biomarker levels may be differentially predictive of specific cognitive functions many years later. In line with the pattern of early accumulation of AD pathology, the PAL task, hypothesized to rely on medial temporal lobe function, was associated with CSF p-tau, whereas the visual search task, hypothesized to rely on frontoparietal function, was associated with CSF amyloid. Studies using amyloid and tau PET imaging will be useful in examining these hypothesized relationships further. (JINS, 2016,22, 968–977)

  1. Albert, M., Soldan, A., Gottesman, R., McKhann, G., Sacktor, N., Farrington, L., & Selnes, O. (2014). Cognitive changes preceding clinical symptom onset of mild cognitive impairment and relationship to ApoE genotype. Current Alzheimer Research, 11(8), 773–784. CrossRef  Google Scholar  PubMed 
  2. Anderson, E.J., Mannan, S.K., Husain, M., Rees, G., Sumner, P., Mort, D.J., & Kennard, C. (2007). Involvement of prefrontal cortex in visual search. Experimental Brain Research, 180(2), 289–302. CrossRef  Google Scholar  PubMed 
  3. Anstey, K.J., Wood, J., Kerr, G., Caldwell, H., & Lord, S.R. (2009). Different cognitive profiles for single compared with recurrent fallers without dementia. Neuropsychology, 23(4), 500–508. CrossRef  Google Scholar  PubMed 
  4. Aschenbrenner, A.J., Balota, D.A., Fagan, A.M., Duchek, J.M., Benzinger, T.L., & Morris, J.C. (2015). Alzheimer disease cerebrospinal fluid biomarkers moderate baseline differences and predict longitudinal change in attentional control and episodic memory composites in the adult children study. Journal of the International Neuropsychological Society, 21(8), 573–583. CrossRef  Google Scholar  PubMed 
  5. Aschenbrenner, A.J., Balota, D.A., Tse, C.S., Fagan, A.M., Holtzman, D.M., Benzinger, T.L., &Morris, J.C. (2015). Alzheimer disease biomarkers, attentional control, and semantic memory retrieval: Synergistic and mediational effects of biomarkers on a sensitive cognitive measure in non-demented older adults. Neuropsychology, 29(3), 368–381. CrossRef  Google Scholar  PubMed 
  6. Bennett, I.J., Barnes, K.A., Howard, J.H. Jr., & Howard, D.V. (2009). An abbreviated implicit spatial context learning task that yields greater learning. Behavioral Research Methods, 41(2), 391–395. CrossRef  Google Scholar  PubMed 
  7. Bilgel, M., Jedynak, B., Wong, D.F., Resnick, S.M., & Prince, J.L. (2015). Temporal trajectory and progression score estimation from voxelwise longitudinal imaging measures: Application to amyloid imaging. Information Processing in Medical Imaging, 24, 424–436. Google Scholar  PubMed 
  8. Blacker, D., Lee, H., Muzikansky, A., Martin, E.C., Tanzi, R., McArdle, J.J., & Albert, M. (2007). Neuropsychological measures in normal individuals that predict subsequent cognitive decline. Archives of Neurology, 64(6), 862–871. CrossRef  Google Scholar  PubMed 
  9. Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H., & Del Tredici, K. (2006). Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathologica, 112(4), 389–404. CrossRef  Google Scholar  PubMed 
  10. Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82(4), 239–259. CrossRef  Google Scholar  PubMed 
  11. Chun, M.M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71. CrossRef  Google Scholar  PubMed 
  12. Corbetta, M., & Shulman, G.L. (1998). Human cortical mechanisms of visual attention during orienting and search. Philosophical Transactions of the Royal Society B: Biological Sciences, 353(1373), 1353–1362. CrossRef  Google Scholar  PubMed 
  13. Cummings, J.L., Mega, M., Gray, K., Rosenberg-Thompson, S., Carusi, D.A., & Gornbein, J. (1994). The Neuropsychiatric Inventory: Comprehensive assessment of psychopathology in dementia. Neurology, 44(12), 2308–2314. CrossRef  Google Scholar  PubMed 
  14. de Jager, C.A., Milwain, E., & Budge, M. (2002). Early detection of isolated memory deficits in the elderly: The need for more sensitive neuropsychological tests. Psychological Medicine, 32(3), 483–491. CrossRef  Google Scholar  PubMed 
  15. de Rover, M., Pironti, V.A., McCabe, J.A., Acosta-Cabronero, J., Arana, F.S., Morein-Zamir, S., & Sahakian, B.J. (2011). Hippocampal dysfunction in patients with mild cognitive impairment: A functional neuroimaging study of a visuospatial paired associates learning task. Neuropsychologia, 49(7), 2060–2070. CrossRef  Google Scholar  PubMed 
  16. Donner, T.H., Kettermann, A., Diesch, E., Ostendorf, F., Villringer, A., & Brandt, S.A. (2002). Visual feature and conjunction searches of equal difficulty engage only partially overlapping frontoparietal networks. Neuroimage, 15(1), 16–25. CrossRef  Google Scholar  PubMed 
  17. Egerhazi, A., Berecz, R., Bartok, E., & Degrell, I. (2007). Automated Neuropsychological Test Battery (CANTAB) in mild cognitive impairment and in Alzheimer’s disease. Progress in Neuropsychopharmacology & Biological Psychiatry, 31(3), 746–751. CrossRef  Google Scholar  PubMed 
  18. Fagan, A.M., Head, D., Shah, A.R., Marcus, D., Mintun, M., Morris, J.C., & Holtzman, D.M. (2009). Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly. Annals of Neurology, 65(2), 176–183. CrossRef  Google Scholar  PubMed 
  19. Fagan, A.M., Roe, C.M., Xiong, C., Mintun, M.A., Morris, J.C., & Holtzman, D.M. (2007). Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Archives of Neurology, 64(3), 343–349. CrossRef  Google Scholar  PubMed 
  20. Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. CrossRef  Google Scholar  PubMed 
  21. Glodzik, L., de Santi, S., Tsui, W.H., Mosconi, L., Zinkowski, R., Pirraglia, E., & de Leon, M.J. (2011). Phosphorylated tau 231, memory decline and medial temporal atrophy in normal elders. Neurobiology of Aging, 32(12), 2131–2141. CrossRef  Google Scholar  PubMed 
  22. Glodzik, L., Mosconi, L., Tsui, W., de Santi, S., Zinkowski, R., Pirraglia, E., & de Leon, M.J. (2012). Alzheimer’s disease markers, hypertension, and gray matter damage in normal elderly. Neurobiology of Aging, 33(7), 1215–1227. CrossRef  Google Scholar  PubMed 
  23. Heitz, R.P. (2014). The speed-accuracy tradeoff: History, physiology, methodology, and behavior. Frontiers in Neuroscience, 8, 150. CrossRef  Google Scholar  PubMed 
  24. Howieson, D.B., Carlson, N.E., Moore, M.M., Wasserman, D., Abendroth, C.D., Payne-Murphy, J., &Kaye, J.A. (2008). Trajectory of mild cognitive impairment onset. Journal of the International Neuropsychological Society, 14(2), 192–198. CrossRef  Google Scholar  PubMed 
  25. Hughes, C.P., Berg, L., Danziger, W.L., Coben, L.A., & Martin, R.L. (1982). A new clinical scale for the staging of dementia. British Journal of Psychiatry, 140, 566–572. CrossRef  Google Scholar 
  26. Insel, P.S., Mattsson, N., Mackin, R.S., Kornak, J., Nosheny, R., Tosun-Turgut, D., & Weiner, M.W. (2015). Biomarkers and cognitive endpoints to optimize trials in Alzheimer’s disease. Annals of Clinical and Translational Neurology, 2(5), 534–547. CrossRef  Google Scholar  PubMed 
  27. Jack, C.R. Jr., Knopman, D.S., Jagust, W.J., Petersen, R.C., Weiner, M.W., Aisen, P.S., & Trojanowski, J.Q. (2013). Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurology, 12(2), 207–216. CrossRef  Google Scholar  PubMed 
  28. Junkkila, J., Oja, S., Laine, M., & Karrasch, M. (2012). Applicability of the CANTAB-PAL computerized memory test in identifying amnestic mild cognitive impairment and Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 34(2), 83–89. CrossRef  Google Scholar  PubMed 
  29. Lenehan, M.E., Summers, M.J., Saunders, N.L., Summers, J.J., & Vickers, J.C. (2016). Does the Cambridge Automated Neuropsychological Test Battery (CANTAB) distinguish between cognitive domains in healthy older adults? Assessment, 15, 192–195. Google Scholar 
  30. Li, G., Millard, S.P., Peskind, E.R., Zhang, J., Yu, C.E., Leverenz, J.B., & Montine, T.J. (2014). Cross-sectional and longitudinal relationships between cerebrospinal fluid biomarkers and cognitive function in people without cognitive impairment from across the adult life span. JAMA Neurology, 71(6), 742–751. CrossRef  Google Scholar  PubMed 
  31. Manelis, A., & Reder, L.M. (2012). Procedural learning and associative memory mechanisms contribute to contextual cueing: Evidence from fMRI and eye-tracking. Learning & Memory, 19(11), 527–534. CrossRef  Google Scholar  PubMed 
  32. Mattsson, N., Insel, P., Nosheny, R., Trojanowski, J.Q., Shaw, L.M., Jack, C.R. Jr., & Weiner, M. (2014). Effects of cerebrospinal fluid proteins on brain atrophy rates in cognitively healthy older adults. Neurobiology of Aging, 35(3), 614–622. CrossRef  Google Scholar  PubMed 
  33. Mattsson, N., Insel, P.S., Nosheny, R., Tosun, D., Trojanowski, J.Q., Shaw, L.M., & Weiner, M.W. (2014). Emerging beta-amyloid pathology and accelerated cortical atrophy. JAMA Neurology, 71(6), 725–734. CrossRef  Google Scholar  PubMed 
  34. McLaughlin, P.M., Borrie, M.J., & Murtha, S.J. (2010). Shifting efficacy, distribution of attention and controlled processing in two subtypes of mild cognitive impairment: Response time performance and intraindividual variability on a visual search task. Neurocase, 16(5), 408–417. CrossRef  Google Scholar  PubMed 
  35. Moghekar, A., Goh, J., Li, M., Albert, M., & O’Brien, R.J. (2012). Cerebrospinal fluid Abeta and tau level fluctuation in an older clinical cohort. Archives of Neurology, 69(2), 246–250. CrossRef  Google Scholar 
  36. Moghekar, A., Li, S., Lu, Y., Li, M., Wang, M.C., Albert, M., &O’Brien, R. (2013). CSF biomarker changes precede symptom onset of mild cognitive impairment. Neurology, 81(20), 1753–1758. CrossRef  Google Scholar  PubMed 
  37. Morris, J.C. (1993). The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology, 43(11), 2412–2414. CrossRef  Google Scholar  PubMed 
  38. Muller-Oehring, E.M., Schulte, T., Rohlfing, T., Pfefferbaum, A., & Sullivan, E.V. (2013). Visual search and the aging brain: Discerning the effects of age-related brain volume shrinkage on alertness, feature binding, and attentional control. Neuropsychology, 27(1), 48–59. CrossRef  Google Scholar  PubMed 
  39. Pettigrew, C., Soldan, A., Moghekar, A., Wang, M.C., Gross, A.L., O’Brien, R., & Albert, M. (2015). Relationship between cerebrospinal fluid biomarkers of Alzheimer’s disease and cognition in cognitively normal older adults. Neuropsychologia, 78, 63–72. CrossRef  Google Scholar  PubMed 
  40. Reitan, R.M. (1958). Validity of the trail making test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271–276. CrossRef  Google Scholar 
  41. Rey, A. (1941). L’examen psychologique dans les cas d’encephalopathie traumatique. Archives de Psychologie, 28, 286–340. Google Scholar 
  42. Roe, C.M., Fagan, A.M., Grant, E.A., Marcus, D.S., Benzinger, T.L., Mintun, M.A., & Morris, J.C. (2011). Cerebrospinal fluid biomarkers, education, brain volume, and future cognition. Archives of Neurology, 68(9), 1145–1151. CrossRef  Google Scholar  PubMed 
  43. Rosler, A., Mapstone, M.E., Hays, A.K., Mesulam, M.M., Rademaker, A., Gitelman, D.R., &Weintraub, S. (2000). Alterations of visual search strategy in Alzheimer’s disease and aging. Neuropsychology, 14(3), 398–408. CrossRef  Google Scholar  PubMed 
  44. Sahakian, B.J., Morris, R.G., Evenden, J.L., Heald, A., Levy, R., Philpot, M., & Robbins, T.W. (1988). A comparative study of visuospatial memory and learning in Alzheimer-type dementia and Parkinson’s disease. Brain, 111(Pt 3), 695–718. CrossRef  Google Scholar  PubMed 
  45. Soldan, A., Pettigrew, C., Li, S., Wang, M.C., Moghekar, A., Selnes, O.A., & O’Brien, R. (2013). Relationship of cognitive reserve and cerebrospinal fluid biomarkers to the emergence of clinical symptoms in preclinical Alzheimer’s disease. Neurobiology of Aging, 34(12), 2827–2834. CrossRef  Google Scholar  PubMed 
  46. Soldan, A., Pettigrew, C., Wang, M.C., Moghekar, A., O’Brien, R., Selnes, O., & Albert, M. (in press). Hypothetical preclinical Alzheimer’s disease groups and longitudinal cognitive change. JAMA Neurology. Google Scholar  PubMed 
  47. Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M., & Phelps, C.H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 280–292. CrossRef  Google Scholar  PubMed 
  48. Steenland, K., Zhao, L., Goldstein, F., Cellar, J., & Lah, J. (2014). Biomarkers for predicting cognitive decline in those with normal cognition. Journal of Alzheimer’s Disease, 40(3), 587–594. Google Scholar  PubMed 
  49. Stricker, N.H., Dodge, H.H., Dowling, N.M., Han, S.D., Erosheva, E.A., & Jagust, W.J. (2012). CSF biomarker associations with change in hippocampal volume and precuneus thickness: Implications for the Alzheimer’s pathological cascade. Brain Imaging and Behavior, 6(4), 599–609. CrossRef  Google Scholar  PubMed 
  50. Sutphen, C.L., Jasielec, M.S., Shah, A.R., Macy, E.M., Xiong, C., Vlassenko, A.G., & Fagan, A.M. (2015). Longitudinal cerebrospinal fluid biomarker changes in preclinical Alzheimer disease during middle age. JAMA Neurology, 72(9), 1029–1042. CrossRef  Google Scholar  PubMed 
  51. Tales, A., Bayer, A.J., Haworth, J., Snowden, R.J., Philips, M., & Wilcock, G. (2011). Visual search in mild cognitive impairment: A longitudinal study. Journal of Alzheimer’s Disease, 24(1), 151–160. Google Scholar  PubMed 
  52. Tales, A., Haworth, J., Nelson, S., Snowden, R.J., & Wilcock, G. (2005). Abnormal visual search in mild cognitive impairment and Alzheimer’s disease. Neurocase, 11(1), 80–84. CrossRef  Google Scholar  PubMed 
  53. Thal, D.R., Rub, U., Orantes, M., & Braak, H. (2002). Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology, 58(12), 1791–1800. CrossRef  Google Scholar  PubMed 
  54. Tosun, D., Schuff, N., Shaw, L.M., Trojanowski, J.Q., & Weiner, M.W. (2011). Relationship between CSF biomarkers of Alzheimer’s disease and rates of regional cortical thinning in ADNI data. Journal of Alzheimer’s Disease, 26(Suppl. 3), 77–90. Google Scholar  PubMed 
  55. Viskontas, I.V., Boxer, A.L., Fesenko, J., Matlin, A., Heuer, H.W., Mirsky, J., &Miller, B.L. (2011). Visual search patterns in semantic dementia show paradoxical facilitation of binding processes. Neuropsychologia, 49(3), 468–478. CrossRef  Google Scholar  PubMed 
  56. Vos, S.J., Xiong, C., Visser, P.J., Jasielec, M.S., Hassenstab, J., Grant, E.A., & Fagan, A.M. (2013). Preclinical Alzheimer’s disease and its outcome: A longitudinal cohort study. The Lancet Neurology, 12(10), 957–965. CrossRef  Google Scholar  PubMed 
  57. Whelan, R. (2008). Effective analysis of reaction time data. The Psychological Record, 58, 475–482. CrossRef  Google Scholar 
  58. Wilson, R.S., Leurgans, S.E., Boyle, P.A., & Bennett, D.A. (2011). Cognitive decline in prodromal Alzheimer disease and mild cognitive impairment. Archives of Neurology, 68(3), 351–356. CrossRef  Google Scholar  PubMed 
  59. Yesavage, J.A., Brink, T.L., Rose, T.L., Lum, O., Huang, V., Adey, M., & Leirer, V.O. (1982). Development and validation of a geriatric depression screening scale: A preliminary report. Journal of Psychiatric Research, 17(1), 37–49. CrossRef  Google Scholar  PubMed 
  60. Yotter, R.A., Doshi, J., Clark, V., Sojkova, J., Zhou, Y., Wong, D.F., & Davatzikos, C. (2013). Memory decline shows stronger associations with estimated spatial patterns of amyloid deposition progression than total amyloid burden. Neurobiology of Aging, 34(12), 2835–2842. CrossRef  Google Scholar  PubMed