2.5 CE Credits. Special Issue on Prediction (JINS 22:10, 2016): CE Bundle 1

- Describe the pattern of cerebral amyloid accumulation seen across stages of preclinical AD.
- Describe relationships between AD biomarkers and aspects of episodic memory function.
- Describe relationships between AD biomarkers and future neurocognitive performance.
Target Audience: | Intermediate |
---|---|
Availability: | Date Available: 2016-11-30 |
You may obtain CE for this JINS package at any time. | |
Offered for CE | Yes |
Cost | Members $25 |
Non-Members $37.50 | |
Refund Policy | This JINS package is not eligible for refunds |
CE Credits | 2.5 |
Prediction of behavior and related outcomes has long been a principal goal of psychology. The development of intelligence tests in the early 20th century led to new strategies for predicting academic and occupational performance (Sternberg, 1996). Similarly, in the mid-19th century, Fechner’s use of mathematical models for prediction of behavior (Wertheimer, 1987) initiated a long tradition that has continued to the present day, which can be seen in the mathematical models of learning developed by Clark Hull (Hull, 1943), dynamic models of the development of spatial memory abilities (Spencer, Smith, & Thelen, 2001), and others. These ideas also led to information processing theories of memory (Atkinson & Shiffrin, 1968; Raaijmakers & Shiffrin, 1980), which have been used to predict specific stages of memory processing that are impaired in patient groups (Brown et al., 1995; Brown, Woodard, & Rich, 1994). Recently, use of prediction strategies in neuropsychology has turned toward development of new approaches for identification and characterization of the development and disease course of neurocognitive and neuropsychiatric disorders.
Prediction involves making a statement about an event that is uncertain, typically based on some type of known information. Although the term “prediction” brings to mind the forecasting of some future outcome or event, the term prediction can also be used for concurrent diagnostic purposes. Since approximately 2000, the number of research studies focused on prediction of diagnosis and clinical trajectories has increased dramatically. Figure 1 shows the number of publications per year returned from a simple search of the terms “preclinical prediction” in the National Library of Medicine (PubMed) database from 1950 to October 1, 2016. Studies of preclinical prediction in neuropsychology have typically focused on identification of persons at the highest risk for specific cognitive conditions. Early identification of risk, or of subtle signs of incipient disease, opens the possibility for treatments to prevent disease development, or to delay onset or slow progression of clinically significant symptoms. Prediction studies after brain injury have also been important for prognosticating the trajectory of recovery and for planning resource allocation for treatment.
State-of-the-art prediction strategies have been facilitated by at least two significant developments over the past 25 years. First, the availability of high-speed computers and software capable of performing complex statistical analyses has supported the development and validation of complex theoretical predictive models. For instance, machine learning approaches to prediction would not be possible without powerful computing resources (Hey, 2010). Machine learning has been successfully used in the context of diagnosis (Bigler, 2013; Mundt, Freed, & Greist, 2000; Teipel, Meindl, Grinberg, Heinsen, & Hampel, 2008) and prognosis (Gutman et al., 2015; Koutsouleris et al., 2009; Moradi, Pepe, Gaser, Huttunen, & Tohka, 2015; Schmidt-Richberg et al., 2016). Second, the identification of biomarkers of a variety of neurological and psychiatric conditions has provided a set of predictors that are highly sensitive to risk factors and pathological changes leading to these conditions (Chong, Lim, & Sahadevan, 2006; Craig-Schapiro, Fagan, & Holtzman, 2009; Mayeux, 2004; Sharma & Laskowitz, 2012; Shaw, Korecka, Clark, Lee, & Trojanowski, 2007). Such biomarkers can be used to test predictions regarding possible etiologies associated with neuropsychological abnormalities (Ivanoiu et al., 2015; Miller et al., 2008; Wirth et al., 2013). Improved genetic testing has also contributed to more accurate predictions of functional changes when combined with neuropsychological and imaging data (O’Hara et al., 1998; Reiman et al., 2004; Small et al., 1996). Some researchers have argued, based on the literature, that “neuromarkers often provide better predictions (neuroprognosis), alone or in combination with other measures, than traditional behavioral measures” (page 11, Gabrieli, Ghosh, & Whitfield-Gabrieli, 2015). As data increasingly emerge, our field will be enriched by identifying the best combinations of measures to predict disease.
Many neurocognitive disorders are known to evolve from a presymptomatic to mildly clinical state to a fully clinical disorder. In essence, they go through different biological and clinical “stages” (McGorry et al., 2007). Two disorders receiving a great deal of research over the past two decades are Alzheimer’s disease (AD) and schizophrenia. For example, AD is preceded by mild cognitive impairment (MCI), and in many cases schizophrenia is preceded by a clinical high-risk (CHR) state identified by attenuated positive psychotic symptoms (i.e., mild delusions and hallucinations with some degree of intact reality testing; Tsuang et al., 2013; Yung & McGorry, 1996). At least in principle, identifying predictors and mechanisms of transition to AD or to psychosis among individuals showing signs of incipient neurocognitive disorders are critical steps in the search for preventive or early intervention strategies (Woodberry, Shapiro, Bryant, & Seidman, 2016). Interest in early detection and prevention of schizophrenia and other psychotic disorders has led to more than a decade of work studying young people who may be at risk of developing a psychotic illness, and advances have been made in prediction of transition to psychosis from a CHR stage (Cannon et al., 2008, 2016; Carrion et al., 2016), including the usage of neuropsychological measures (Giuliano et al., 2012; Seidman, Giuliano, & Walker, 2010; Seidman et al., 2016).
Studies investigating early detection of neurological and psychiatric conditions have improved understanding of etiology and diagnosis significantly, and they have opened new avenues for management. Presymptomatic detection is also essential to the development of effective intervention strategies, as it provides a window for preventing/delaying onset or reducing severity. This special issue of the Journal of the International Neuropsychological Society includes nine papers describing cutting-edge empirical findings that exemplify key methodological advances for preclinical detection of a variety of neurological, neurodevelopmental, and neuropsychiatric conditions. Methodological approaches taken include assessment of familial and genetic risk analyses, phenotypic characterization using cognitive and/or imaging methods, and evaluation of biomarker effectiveness. These papers provide substantive integrative and synthetic summaries of the current status of preclinical detection methodologies and future directions for the field.
As novel biomarkers of early, disease-related changes are identified, strategies for making optimal use of this information are becoming increasingly important. In this special issue, several papers focus on description of novel methodologies for combining biomarker data with other clinical information for diagnosis or prognosis. In a thorough literature review, Cooper and colleagues describe state-of-the-art objective biomarkers in prodromal Parkinson’s disease (PD), and they discuss several strategies for combining these biomarkers with clinical and genetic data for improving sensitivity and specificity for identification of persons with prodromal PD. Soldan and colleagues demonstrate that beta-amyloid and phosphorylated tau measured in cerebrospinal fluid can predict cognitive functioning as long as 10 years later. Using data from the Alzheimer’s Disease Neuroimaging Initiative, Edmonds and colleagues demonstrate how a novel method for staging preclinical AD using amyloid positron emission tomography (PET) imaging can be combined with detailed cognitive assessment to better characterize preclinical AD. Notably, this study found that considerable amyloid accumulation had already occurred before clinical diagnosis. Finally, in a cross-sectional study, Quenon and colleagues demonstrate the relationships between imaging measures of extent of early AD neuropathology, as indexed by in vivo neuroimaging biomarkers (amyloid PET, hippocampal volume, and measures of cortical thickness) and level of memory performance on the Free and Cued Selective Reminding Test. Although biomarkers of early AD neuropathology predicted overall memory performance, cueing efficiency, which is frequently impaired in AD, demonstrated particularly strong relationships with cortical thickness of regions that are commonly atrophic in early AD.
Assessment of the influence of familial and genetic risk factors has also become an important tool for forecasting diagnostic status. The family high-risk approach allows a defined selection process for ascertaining non-ill subjects in a family in which there is an identified proband with the illness. An advantage of such an approach is that it is not dependent on symptom expression, but rather genetic risk, and thus an unaffected individual could be studied at any age, enabling developmentally guided probes of risk (Agnew-Blais & Seidman, 2013). The “unaffected relatives” are typically offspring or siblings who are considered to be at higher risk for the illness or for phenotypes associated with the illness, because they carry approximately 50% of the genes for the illness. This approach has been used for over half a century, and has been one of the most fruitful ways of identifying components of the vulnerability to various illnesses, particularly schizophrenia. The most typical outcome used in many of these studies originally was “developing the illness” (e.g., schizophrenia, AD, etc.). However, outcomes can also be expressed in a range of phenotypes reflecting the underlying disorder, and outcomes such as functional disability are also very important. A wide range of phenotypes (e.g., working memory or attention problems, smaller hippocampi) can be studied at different ages to evaluate developmental effects, and in different sub-populations (e.g., those with higher vs. lower genetic loading) to study the specific subgroup expression of the phenotypes.
In this issue, Lancaster and colleagues demonstrate that baseline diffusion tensor imaging of the white matter microstructure in the medial temporal lobe can predict longitudinal changes in episodic memory functioning over 3 years in a sample of cognitively healthy older adults with an enriched familial and genetic risk for AD. Koscik and colleagues compare sensitivity for predicting subsequent cognitive impairment using either variability in performance across cognitive tasks or combinations of outcomes from particular tasks (e.g., memory and executive tasks) taken at baseline several years earlier. In an investigation of neuropsychological endophenotypes of familial risk for schizophrenia and affective psychosis, Seidman and colleagues found that working memory impairment was more robust than vigilance for characterizing the cognitive impairment associated with familial risk for schizophrenia. Although persons with familial risk for affective psychosis showed more impaired vigilance relative to other groups, this effect was eliminated after adjustment for several psychopathological symptoms. This work was part of an agenda to identify the most sensitive and specific neuropsychological predictors of risk for different forms of psychosis (see also Seidman et al., 2016). Each of these studies demonstrates novel methodologies for studying the influence of familial and genetic risk for possible diagnosis and prognosis.
Finally, two articles in this issue focus on the use of prediction strategies for prognosticating outcome after brain injury has already occurred in pediatric samples. Ransom and colleagues use evidence-based assessment (EBA) to identify teenage students who are at-risk for post-concussive academic difficulty. Self-reported post-injury symptoms and executive functioning difficulty, rather than parent-reported sequelae, showed the strongest relationships with perceived post-injury academic difficulties. This study demonstrates the utility of the EBA framework within the context of neuropsychological assessment. Till and colleagues studied cognitive, academic, and psychosocial difficulties experienced by children diagnosed with an acquired demyelinating syndrome (ADS), one-third of whom were later diagnosed with multiple sclerosis (MS), over a 6-month follow-up period. Children with ADS were shown to demonstrate a favorable neurocognitive outcome in the short-term, including children diagnosed with MS.
In summary, the papers in this Special Issue present several novel approaches toward developing methodologies for prediction in neuropsychology. Research on optimizing the information obtained from biomarkers will undoubtedly continue to be stimulated by the identification of new biomarkers in the future. Introduction of new frameworks for assessment, such as EBA, and other strategies for evaluating longitudinal cognitive, clinical, and neuroimaging changes in outcome, as presented by several studies in this special issue, will also be helpful for moving the field forward. Capitalization on new developments in genetic analyses and assessment of familial risk factors will also be important tools for improving predictive accuracy.
Nevertheless, we also face challenges with respect to definition of appropriate statistical models used for assessment of change, growth, or decline (Cronbach & Furby, 1970; Francis, Fletcher, Stuebing, Davidson, & Thompson, 1991; Gottman & Rushe, 1993; Harrell, 2015; Singer & Willett, 2003; Steyerberg, 2009; Steyerberg & Harrell, 2016; Steyerberg et al., 2010; Temkin, Heaton, Grant, & Dikmen, 1999). While these issues are certainly not new, continued focus on improving definitions of the change that we are predicting, and on models for assessing the effectiveness of variables predicting this change, are certainly warranted. Despite these challenges, research on preclinical prediction continues to grow, and future studies promise to contribute to improvement in preventative treatments before cognitive decline occurs as well as to more effective treatments and allocation of resources following brain injury.
We examined florbetapir positron emission tomography (PET) amyloid scans across stages of preclinical Alzheimer’s disease (AD) in cortical, allocortical, and subcortical regions. Stages were characterized using empirically defined methods.
A total of 312 cognitively normal Alzheimer’s Disease Neuroimaging Initiative participants completed a neuropsychological assessment and florbetapir PET scan. Participants were classified into stages of preclinical AD using (1) a novel approach based on the number of abnormal biomarkers/cognitive markers each individual possessed, and (2) National Institute on Aging and the Alzheimer’s Association (NIA-AA) criteria. Preclinical AD groups were compared to one another and to a mild cognitive impairment (MCI) sample on florbetapir standardized uptake value ratios (SUVRs) in cortical and allocortical/subcortical regions of interest (ROIs).
Amyloid deposition increased across stages of preclinical AD in all cortical ROIs, with SUVRs in the later stages reaching levels seen in MCI. Several subcortical areas showed a pattern of results similar to the cortical regions; however, SUVRs in the hippocampus, pallidum, and thalamus largely did not differ across stages of preclinical AD.
Substantial amyloid accumulation in cortical areas has already occurred before one meets criteria for a clinical diagnosis. Potential explanations for the unexpected pattern of results in some allocortical/subcortical ROIs include lack of correspondence between (1) cerebrospinal fluid and florbetapir PET measures of amyloid, or between (2) subcortical florbetapir PET SUVRs and underlying neuropathology. Findings support the utility of our novel method for staging preclinical AD. By combining imaging biomarkers with detailed cognitive assessment to better characterize preclinical AD, we can advance our understanding of who is at risk for future progression. (JINS, 2016,22, 978–990)
- Arriagada, P.V., Growdon, J.H., Hedley-Whyte, E.T., & Hyman, B.T. (1992). Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology, 42, 631–639. CrossRef Google Scholar PubMed
- Balasubramanian, A.B., Kawas, C.H., Peltz, C.B., Brookmeyer, R., & Corrada, M.M. (2012). Alzheimer disease pathology and longitudinal cognitive performance in the oldest-old with no dementia. Neurology, 79(9), 915–921. doi: 10.1212/WNL.0b013e318266fc77 CrossRef Google Scholar PubMed
- Bangen, K.J., Clark, A.L., Werhane, M., Edmonds, E., Nation, D.A., Evangelista, N., & Delano-Wood, L. (2016). Cortical amyloid burden in empirically-derived MCI subtypes. Journal of Alzheimer’s Disease, 52, 849–861. CrossRef Google Scholar
- Bateman, R.J., Xiong, C., Benzinger, T.L., Fagan, A.M., Goate, A., Fox, N.C., & Morris, J.C. (2012). Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. New England Journal of Medicine, 367(9), 795–804. doi: 10.1056/NEJMoa1202753 CrossRef Google Scholar PubMed
- Beach, T.G., Thal, D.R., Zanette, M., Smith, A., & Buckley, C. (2016). Detection of striatal amyloid plaques with [18F]flutemetamol: Validation with postmortem histopathology. Journal of Alzheimer’s Disease, 52, 863–873. CrossRef Google Scholar
- Bennett, D.A., Schneider, J.A., Bienias, J.L., Evans, D.A., & Wilson, R.S. (2005). Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions. Neurology, 64(5), 834–841. doi: 10.1212/01.wnl.0000152982.47274.9e CrossRef Google Scholar PubMed
- Bondi, M.W., Edmonds, E.C., Jak, A.J., Clark, L.R., Delano-Wood, L., McDonald, C.R., & Salmon, D.P. (2014). Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and prediction of progression. Journal of Alzheimer’s Disease, 42(1), 275–289. doi: 10.3233/JAD-140276 CrossRef Google Scholar
- Braak, H., & Braak, E. (1990). Alzheimer’s disease: Striatal amyloid deposits and neurofibrillary changes. Journal of Neuropathology and Experimental Neurology, 49(3), 215–224. CrossRef Google Scholar PubMed
- Braak, H., & Del Tredici, K. (2015). The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain, 138(10), 2814–2833. doi: 10.1093/brain/awv236 CrossRef Google Scholar PubMed
- Braak, H., Zetterberg, H., Del Tredici, K., & Blennow, K. (2013). Intraneuronal tau aggregation precedes diffuse plaque deposition, but amyloid-β changes occur before increases of tau in cerebrospinal fluid. Acta Neuropathologica, 126(5), 631–641. doi: 10.1007/s00401-013-1139-0 CrossRef Google Scholar PubMed
- Brilliant, M.J., Elble, R.J., Ghobrial, M., & Struble, R.G. (1997). The distribution of amyloid beta protein deposition in the corpus striatum of patients with Alzheimer’s disease. Neuropathology and Applied Neurobiology, 23(4), 322–325. CrossRef Google Scholar PubMed
- Chételat, G., La Joie, R., Villain, N., Perrotin, A., da La Sayette, V., Eustache, F., & Vandenberghe, R. (2013). Amyloid imaging in cognitively normal individuals, at-risk populations and preclinical Alzheimer’s disease. Neuroimage: Clinical, 2, 356–365. doi: 10.1016/j.nicl.2013.02.006 CrossRef Google Scholar PubMed
- Cho, H., Seo, S.W., Kim, J.H., Suh, M.K., Lee, J.H., Choe, Y.S., & Na, D.L. (2013). Amyloid deposition in early onset versus late onset Alzheimer’s disease. Journal of Alzheimer’s Disease, 35(4), 813–821. doi: 10.3233/JAD-121927 CrossRef Google Scholar PubMed
- Clark, C.M., Pontecorvo, M.J., Beach, T.G., Bedell, B.J., Coleman, R.E., Doraiswamy, P.M., & Skovronsky, D.M. (2012). Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-beta plaques: A prospective cohort study. Lancet Neurology, 11(8), 669–678. doi: 10.1016/s1474-4422(12)70142-4 CrossRef Google Scholar PubMed
- Clark, L.R., Delano-Wood, L., Libon, D.J., McDonald, C.R., Nation, D.A., Bangen, K.J., & Bondi, M.W. (2013). Are empirically derived subtypes of mild cognitive impairment consistent with conventional subtypes? Journal of the International Neuropsychological Society, 19(6), 635–645. doi: 10.1017/S1355617713000313 CrossRef Google Scholar PubMed
- Davis, D.G., Schmitt, F.A., Wekstein, D.R., & Markesbery, W.R. (1999). Alzheimer neuropathologic alterations in aged cognitively normal subjects. Journal of Neuropathology and Experimental Neurology, 58(4), 376–388. CrossRef Google Scholar PubMed
- Edmonds, E.C., Delano-Wood, L., Clark, L.R., Jak, A.J., Nation, D.A., McDonald, C.R., & Bondi, M.W. (2015). Susceptibility of the conventional criteria for mild cognitive impairment to false positive diagnostic errors. Alzheimer’s & Dementia, 11(4), 415–424. doi: 10.1016/j.jalz.2014.03.005 CrossRef Google Scholar PubMed
- Edmonds, E.C., Delano-Wood, L., Galasko, D.R., Salmon, D.P., & Bondi, M.W. (2015). Subtle cognitive decline and biomarker staging in preclinical Alzheimer’s Disease. Journal of Alzheimer’s Disease, 47(1), 231–242. doi: 10.3233/JAD-150128 CrossRef Google Scholar PubMed
- Edmonds, E.C., Delano-Wood, L., Jak, A.J., Galasko, D.R., Salmon, D.P., & Bondi, M.W. (2016). “Missed” mild cognitive impairment: High false-negative error rate based on conventional diagnostic criteria. Journal of Alzheimer’s Disease, 52, 685–691. doi: 10.3233/JAD-150986 CrossRef Google Scholar PubMed
- Edmonds, E.C., Eppig, J., Bondi, M.W., Leyden, K.M., Goodwin, B., Delano-Wood, L., & McDonald, C.R. (in press). Heterogeneous cortical atrophy patterns in MCI not captured by conventional diagnostic criteria. Neurology. Google Scholar
- Eggert, L.D., Sommer, J., Jansen, A., Kircher, T., & Konrad, C. (2012). Accuracy and reliability of automated gray matter segmentation pathways on real and simulated structural magnetic resonance images of the human brain. PLoS One, 7, e45081. doi: 10.1371/journal.pone.0045081 CrossRef Google Scholar PubMed
- Giannakopoulos, P., Hof, P.R., Michel, J.P., Guimon, J., & Bouras, C. (1997). Cerebral cortex pathology in aging and Alzheimer’s disease: A quantitative survey of large hospital-based geriatric and psychiatric cohorts. Brain Research Reviews, 25(2), 217–245. CrossRef Google Scholar PubMed
- Hatsuta, H., Takao, M., Ishii, K., Ishiwata, K., Saito, Y., Kanemaru, K., & Murayama, S. (2015). Amyloid β accumulation assessed with 11C-Pittsburgh compound B PET and postmortem neuropathology. Current Alzheimer Research, 12(3), 278–286. CrossRef Google Scholar
- Ivnik, R.J., Malec, J.F., Smith, G.E., Tangalos, E.G., Petersen, R.C., Kokmen, E., & Kurland, L.T. (1992). Mayo’s older Americans normative studies: Updated AVLT norms for ages 56 to 97. Clinical Neuropsychologist, 6, 83–104. CrossRef Google Scholar
- Jack, C.R., Jr., Knopman, D.S., Jagust, W.J., Shaw, L.M., Aisen, P.S., Weiner, M.W., & Trojanowski, J.Q. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurology, 9(1), 119–128. doi: 10.1016/S1474-4422(09)70299-6 CrossRef Google Scholar PubMed
- Jack, C.R. Jr., Knopman, D.S., Jagust, W.J., Petersen, R.C., Weiner, M.W., Aisen, P.S., & Trojanowski, J.Q. (2013). Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurology, 12(2), 207–216. doi: 10.1016/S1474-4422(12)70291-0 CrossRef Google Scholar PubMed
- Jack, C.R. Jr., Knopman, D.S., Weigand, S.D., Wiste, H.J., Vemuri, P., Lowe, V., & Petersen, R.C. (2012). An operational approach to National Institute on Aging-Alzheimer’s Association criteria for preclinical Alzheimer disease. Annals of Neurology, 71(6), 765–775. doi: 10.1002/ana.22628 CrossRef Google Scholar PubMed
- Jack, C.R., Jr., Wiste, H.J., Weigand, S.D., Knopman, D.S., Lowe, V., Vemuri, P., & Petersen, R.C. (2013). Amyloid-first and neurodegeneration-first profiles characterize incident amyloid PET positivity. Neurology, 81(20), 1732–1740. doi: 10.1212/01.wnl.0000435556.21319.e4 CrossRef Google Scholar PubMed
- Jagust, W.J., Landau, S.M., Shaw, L.M., Trojanowski, J.Q., Koeppe, R.A., Reiman, E.M., & Mathis, C.A. (2009). Relationships between biomarkers in aging and dementia. Neurology, 73(15), 1193–1199. CrossRef Google Scholar PubMed
- Jak, A.J., Bondi, M.W., Delano-Wood, L., Wierenga, C., Corey-Bloom, J., Salmon, D.P., & Delis, D.C. (2009). Quantification of five neuropsychological approaches to defining mild cognitive impairment. American Journal of Geriatric Psychiatry, 17(5), 368–375. doi: 10.1097/JGP.0b013e31819431d5 CrossRef Google Scholar PubMed
- Jansen, W.J., Ossenkoppele, R., Knol, D.L., Tijms, B.M., Scheltens, P., Verhey, F.R., & Zetterberg, H. (2015). Prevalence of cerebral amyloid pathology in persons without dementia: A meta-analysis. Journal of the American Medical Association, 313(19), 1924–1938. doi: 10.1001/jama.2015.4668 CrossRef Google Scholar PubMed
- Jedynak, B.M., Lang, A., Liu, B., Katz, E., Zhang, Y., Wyman, B.T., & Prince, J.L. (2012). A computational neurodegenerative disease progression score: Method and results with the Alzheimer’s disease neuroimaging initiative cohort. Neuroimage, 63(3), 1478–1486. doi: 10.1016/j.neuroimage.2012.07.059 CrossRef Google Scholar PubMed
- Joshi, A.D., Pontecorvo, M.J., Clark, C.M., Carpenter, A.P., Jennings, D.L., Sadowsky, C.H., & Skovronsky, D.M. (2012). Performance characteristics of amyloid PET with florbetapir F 18 in patients with Alzheimer’s disease and cognitively normal subjects. Journal of Nuclear Medicine, 53(3), 378–384. doi: 10.2967/jnumed.111.090340 CrossRef Google Scholar PubMed
- Klunk, W.E., Price, J.C., Mathis, C.A., Tsopelas, N.D., Lopresti, B.J., Ziolko, S.K., & DeKosky, S.T. (2007). Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. Journal of Neuroscience, 27(23), 6174–6184. CrossRef Google Scholar PubMed
- Knopman, D.S., Jack, C.R. Jr., & Wiste, H.J. (2012). Short-term clinical outcomes for stages of NIA-AA preclinical Alzheimer disease. Neurology, 78(20), 1576–1582. doi: 10.1212/WNL.0b013e3182563bbe CrossRef Google Scholar PubMed
- Landau, S.M., Breault, C., Joshi, A.D., Pontecorvo, M., Mathis, C.A., Jagust, W.J., & Mintun, M.A. (2013). Amyloid-beta imaging with Pittsburgh compound B and florbetapir: Comparing radiotracers and quantification methods. Journal of Nuclear Medicine, 54(1), 70–77. doi: 10.2967/jnumed.112.109009 CrossRef Google Scholar PubMed
- Landau, S.M., Harvey, D., Madison, C.M., Reiman, E.M., Foster, N.L., Aisen, P.S., & Jagust, W.J. (2010). Comparing predictors of conversion and decline in mild cognitive impairment. Neurology, 75(3), 230–238. doi: 10.1212/WNL.0b013e3181e8e8b8 CrossRef Google Scholar PubMed
- Landau, S.M., Lu, M., Joshi, A.D., Pontecorvo, M., Mintun, M.A., Trojanowski, J.Q., & Shaw, L.M. (2013). Comparing PET imaging and CSF measurements in Aβ. Annals of Neurology, 74(6), 826–836. doi: 10.1002/ana.23908 CrossRef Google Scholar
- Leinonen, V., Alafuzoff, I., Aalto, S., Suotunen, T., Savolainen, S., Nagren, K., & Rinner, J.O. (2008). Assessment of beta-amyloid in a frontal cortical brain biopsy specimen and by positron emission tomography with carbon 11-labeled Pittsburgh Compound B. Archives of Neurology, 65(10), 1304–1309. CrossRef Google Scholar
- Leuzy, A., Zimmer, E.R., Heurling, K., Rosa-Neto, P., & Gauthier, S. (2014). Use of amyloid PET across the spectrum of Alzheimer’s disease: Clinical utility and associated ethical issues. Amyloid, 21(3), 143–148. doi: 10.3109/13506129.2014.926267 CrossRef Google Scholar PubMed
- Mormino, E.C., Kluth, J.T., Madison, C.M., Rabinovici, G.D., Baker, S.L., Miller, B.L., & Jagust, M.J. (2009). Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects. Brain, 132, 1310–1323. CrossRef Google Scholar PubMed
- Nettiksimmons, J., Beckett, L., Schwarz, C., Carmichael, O., Fletcher, E., & Decarli, C. (2013). Subgroup of ADNI normal controls characterized by atrophy and cognitive decline associated with vascular damage. Psychology and Aging, 28, 191–201. doi: 10.1037/a0031063 CrossRef Google Scholar PubMed
- Petersen, R.C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256, 183–194. CrossRef Google Scholar PubMed
- Petersen, R.C., Aisen, P.S., Beckett, L.A., Donohue, M.C., Gamst, A.C., Harvey, D.J., & Weiner, M.W. (2010). Alzheimer’s Disease Neuroimaging Initiative (ADNI): Clinical characterization. Neurology, 74(3), 201–209. doi: 10.1212/WNL.0b013e3181cb3e25 CrossRef Google Scholar
- Price, J.L., Davis, P.B., Morris, J.C., & White, D.L. (1991). The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiology of Aging, 12(4), 295–312. CrossRef Google Scholar PubMed
- Price, J.L., McKeel, D.W., Jr., Buckles, V.D., Roe, C.M., Xiong, C., Grundman, M., & Morris, J.C. (2009). Neuropathology of nondemented aging: Presumptive evidence for preclinical Alzheimer disease. Neurobiology of Aging, 30(7), 1026–1036. CrossRef Google Scholar PubMed
- Rodrigue, K.M., Kennedy, K.M., Devous, M.D. Sr., Rieck, J.R., Hebrank, A.C., Diaz-Arrastia, R., & Park, D.C. (2012). β-Amyloid burden in healthy aging: Regional distribution and cognitive consequences. Neurology, 78(6), 387–395. doi: 10.1212/WNL.0b013e318245d295 CrossRef Google Scholar PubMed
- Rowe, C.C., Ng, S., Ackermann, U., Gong, S.J., Pike, K., Savage, G., & Villemagne, V.L. (2007). Imaging beta-amyloid burden in aging and dementia. Neurology, 68(20), 1718–1725. doi: 10.1212/01.wnl.0000261919.22630.ea CrossRef Google Scholar PubMed
- Royston, P., Altman, D.G., & Sauerbrei, W. (2006). Dichotomizing continuous predictors in multiple regression: A bad idea. Statistics in Medicine, 25, 127–141. CrossRef Google Scholar PubMed
- Shaw, L.M., Vanderstichele, H., Knapik-Czajka, M., Clark, C.M., Aisen, P.S., Petersen, R.C., & Trojanowski, J.Q. (2009). Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Annals of Neurology, 65(4), 403–413. doi: 10.1002/ana.21610 CrossRef Google Scholar PubMed
- Shirk, S.D., Mitchell, M.B, Shaughnessy, L.W., Sherman, J.C., Locascio, J.J., Weintraub, S., & Atri, A. (2011). A web-based normative calculator for the uniform data set (UDS) neuropsychological test battery. Alzheimer’s Research & Therapy, 3(6), 32. doi: 10.1186/alzrt94 CrossRef Google Scholar PubMed
- Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M., & Phelps, C.H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7, 280–292. doi: 10.1016/j.jalz.2011.03.003 CrossRef Google Scholar PubMed
- Sperling, R., Mormino, E., & Johnson, K. (2014). The evolution of preclinical Alzheimer’s disease: Implications for prevention trials. Neuron, 84(3), 608–622. doi: 10.1016/j.neuron.2014.10.038 CrossRef Google Scholar PubMed
- Suenaga, T., Hirano, A., Llena, J.F, Yen, S.H., & Dickson, D.W. (1990). Modified Bielschowsky stain and immunohistochemical studies on striatal plaques in Alzheimer’s disease. Acta Neuropathologica, 80(3), 280–286. CrossRef Google Scholar PubMed
- Thal, D.R., Rüb, U., Orantes, M., & Braak, H. (2002). Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology, 58(12), 1791–2000. CrossRef Google Scholar PubMed
- Toledo, J.B., Bjerke, M., Da, X., Landau, S.M., Foster, N.L., Jagust, W., & Trojanowski, J.Q. (2015). Nonlinear association between cerebrospinal fluid and florbetapir F-18 β-amyloid measures across the spectrum of Alzheimer disease. JAMA Neurology, 72(5), 571–581. CrossRef Google Scholar PubMed
- Toledo, J.B., Cairns, N.J., Da, X., Chen, K., Carter, D., Fleisher, A., & Trojanoswki, J.Q. (2013). Clinical and multimodal biomarker correlates of ADNI neuropathological findings. Acta Neuropathologica Communications, 1, 65. doi: 10.1186/2051-5960-1-65 CrossRef Google Scholar PubMed
- Toledo, J.B., Weiner, M.W., Wolk, D.A., Da, X., Chen, K., Arnold, S.E., & Trojanowski, J.Q. (2014). Neuronal injury biomarkers and prognosis in ADNI subjects with normal cognition. Acta Neuropathologica Communications, 2, 26. CrossRef Google Scholar PubMed
- Weintraub, S., Salmon, D., Mercaldo, N., Ferris, S., Graff-Radford, N.R., Chui, H., & Morris, J.C. (2009). The Alzheimer’s disease centers’ uniform data set (UDS): The neuropsychologic test battery. Alzheimer Disease and Associated Disorders, 23(2), 91–101. doi: 10.1097/WAD.0b013e318191c7dd CrossRef Google Scholar PubMed
Relatively few studies have investigated relationships between performance on clinical memory measures and indexes of underlying neuropathology related to Alzheimer’s disease (AD). This study investigated predictive relationships between Free and Cued Selective Reminding Test (FCSRT) cue efficiency (CE) and free-recall (FR) measures and brain amyloid levels, hippocampal volume (HV), and regional cortical thickness.
Thirty-one older controls without memory complaints and 60 patients presenting memory complaints underwent the FCSRT, amyloid imaging using [F18]-flutemetamol positron emission tomography, and surface-based morphometry (SBM) using brain magnetic resonance imaging. Three groups were considered: patients with high (Aβ+P) and low (Aβ− P) amyloid load and controls with low amyloid load (Aβ− C).
Aβ+P showed lower CE than both Aβ− groups, but the Aβ− groups did not differ significantly. In contrast, FR discriminated all groups. SBM analyses revealed that CE indexes were correlated with the cortical thickness of a wider set of left-lateralized temporal and parietal regions than FR. Regression analyses demonstrated that amyloid load and left HV independently predicted FCSRT scores. Moreover, CE indexes were predicted by the cortical thickness of some regions involved in early AD, such as the entorhinal cortex.
Compared to FR measures, CE indexes appear to be more specific for differentiating persons on the basis of amyloid load. Both CE and FR performance were predicted independently by brain amyloid load and reduced left HV. However, CE performance was also predicted by the cortical thickness of regions known to be atrophic early in AD. (JINS, 2016,22, 991–1004)
- Ahn, H. J., Seo, S. W., Chin, J., Suh, M. K., Lee, B. H., Kim, S. T., & Na, D. L. (2011). The cortical neuroanatomy of neuropsychological deficits in mild cognitive impairment and Alzheimer’s disease: A surface-based morphometric analysis. Neuropsychologia, 49(14), 3931–3945. doi:10.1016/j.neuropsychologia.2011.10.010 CrossRef Google Scholar PubMed
- Albert, M. S. (1996). Cognitive and neurobiologic markers of early Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13547–13551. CrossRef Google Scholar PubMed
- Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., & Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 270–279. doi:10.1016/j.jalz.2011.03.008 CrossRef Google Scholar
- American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders: DSM-IV-TR (4th Ed.). Washington, DC: American Psychiatric Association. Google Scholar PubMed
- Atienza, M., Atalaia-Silva, K. C., Gonzalez-Escamilla, G., Gil-Neciga, E., Suarez-Gonzalez, A., & Cantero, J. L. (2011). Associative memory deficits in mild cognitive impairment: The role of hippocampal formation. Neuroimage, 57(4), 1331–1342. doi:10.1016/j.neuroimage.2011.05.047 CrossRef Google Scholar PubMed
- Becker, J. A., Hedden, T., Carmasin, J., Maye, J., Rentz, D. M., Putcha, D., & Johnson, K. A. (2011). Amyloid-beta associated cortical thinning in clinically normal elderly. Annals of Neurology, 69(6), 1032–1042. doi:10.1002/ana.22333 CrossRef Google Scholar PubMed
- Blennow, K., Mattsson, N., Scholl, M., Hansson, O., & Zetterberg, H. (2015). Amyloid biomarkers in Alzheimer’s disease. Trends in Pharmacological Sciences, 36(5), 297–309. doi:10.1016/j.tips.2015.03.002 CrossRef Google Scholar PubMed
- Bonner-Jackson, A., Mahmoud, S., Miller, J., & Banks, S. J. (2015). Verbal and non-verbal memory and hippocampal volumes in a memory clinic population. Alzheimer’s Research & Therapy, 7(1), 61. doi:10.1186/s13195-015-0147-9 CrossRef Google Scholar
- Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropatholigica, 82(4), 239–259. CrossRef Google Scholar PubMed
- Carlesimo, G. A., Perri, R., & Caltagirone, C. (2011). Category cued recall following controlled encoding as a neuropsychological tool in the diagnosis of Alzheimer’s disease: A review of the evidence. Neuropsychology Review, 21(1), 54–65. doi:10.1007/s11065-010-9153-7 CrossRef Google Scholar
- Chen, P., Ratcliff, G., Belle, S. H., Cauley, J. A., DeKosky, S. T., & Ganguli, M. (2000). Cognitive tests that best discriminate between presymptomatic AD and those who remain nondemented. Neurology, 55(12), 1847–1853. CrossRef Google Scholar PubMed
- Crary, J. F., Trojanowski, J. Q., Schneider, J. A., Abisambra, J. F., Abner, E. L., Alafuzoff, I., & Nelson, P. T. (2014). Primary age-related tauopathy (PART): A common pathology associated with human aging. Acta Neuropatholigica, 128(6), 755–766. doi:10.1007/s00401-014-1349-0 CrossRef Google Scholar PubMed
- Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968–980. doi:10.1016/j.neuroimage.2006.01.021 CrossRef Google Scholar PubMed
- Dickerson, B. C., Bakkour, A., Salat, D. H., Feczko, E., Pacheco, J., Greve, D. N., & Buckner, R. L. (2009). The cortical signature of Alzheimer’s disease: Regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cerebral Cortex, 19(3), 497–510. doi:10.1093/cercor/bhn113 CrossRef Google Scholar PubMed
- Dickerson, B. C., Feczko, E., Augustinack, J. C., Pacheco, J., Morris, J. C., Fischl, B., & Buckner, R. L. (2009). Differential effects of aging and Alzheimer’s disease on medial temporal lobe cortical thickness and surface area. Neurobiology of Aging, 30(3), 432–440. doi:10.1016/j.neurobiolaging.2007.07.022 CrossRef Google Scholar PubMed
- Dickerson, B. C., Fenstermacher, E., Salat, D. H., Wolk, D. A., Maguire, R. P., Desikan, R., & Fischl, B. (2008). Detection of cortical thickness correlates of cognitive performance: Reliability across MRI scan sessions, scanners, and field strengths. Neuroimage, 39(1), 10–18. doi:10.1016/j.neuroimage.2007.08.042 CrossRef Google Scholar PubMed
- Dierckx, E., Engelborghs, S., De Raedt, R., Van Buggenhout, M., De Deyn, P. P., Verte, D., & Ponjaert-Kristoffersen, I. (2009). Verbal cued recall as a predictor of conversion to Alzheimer’s disease in mild cognitive impairment. International Journal of Geriatric Psychiatry, 24(10), 1094–1100. doi:10.1002/gps.2228 CrossRef Google Scholar PubMed
- Dore, V., Villemagne, V. L., Bourgeat, P., Fripp, J., Acosta, O., Chetelat, G., & Rowe, C. C. (2013). Cross-sectional and longitudinal analysis of the relationship between Abeta deposition, cortical thickness, and memory in cognitively unimpaired individuals and in Alzheimer disease. JAMA Neurology, 70(7), 903–911. doi:10.1001/jamaneurol.2013.1062 CrossRef Google Scholar PubMed
- Dubois, B., Feldman, H. H., Jacova, C., Dekosky, S. T., Barberger-Gateau, P., Cummings, J., & Scheltens, P. (2007). Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurology, 6(8), 734–746. doi:10.1016/S1474-4422(07)70178-3 CrossRef Google Scholar
- Ferguson, C. J. (2009). An effect size primer: A guide for clinicians and researchers. Professional Psychology: Research and Practice, 40(5), 532–538. doi:10.1037/a0015808 CrossRef Google Scholar
- Fischl, B., Salat, D. H., van der Kouwe, A. J., Makris, N., Segonne, F., Quinn, B. T., & Dale, A. M. (2004). Sequence-independent segmentation of magnetic resonance images. Neuroimage, 23(Suppl 1), S69–S84. doi:10.1016/j.neuroimage.2004.07.016 CrossRef Google Scholar PubMed
- Frisoni, G. B., Prestia, A., Zanetti, O., Galluzzi, S., Romano, M., Cotelli, M., &Geroldi, C. (2009). Markers of Alzheimer’s disease in a population attending a memory clinic. Alzheimer’s & Dementia, 5(4), 307–317. doi:10.1016/j.jalz.2009.04.1235 CrossRef Google Scholar
- Grober, E., & Buschke, H. (1987). Genuine memory deficits in dementia. Developmental Neuropsychology, 3, 13–36. CrossRef Google Scholar
- Grober, E., Lipton, R. B., Hall, C., & Crystal, H. (2000). Memory impairment on free and cued selective reminding predicts dementia. Neurology, 54(4), 827–832. CrossRef Google Scholar PubMed
- Grober, E., Sanders, A. E., Hall, C., & Lipton, R. B. (2010). Free and cued selective reminding identifies very mild dementia in primary care. Alzheimer Disease & Associated Disorders, 24(3), 284–290. doi:10.1097/WAD.0b013e3181cfc78b Google Scholar PubMed
- Hanseeuw, B., Dricot, L., Kavec, M., Grandin, C., Seron, X., & Ivanoiu, A. (2011). Associative encoding deficits in amnestic mild cognitive impairment: A volumetric and functional MRI study. Neuroimage, 56(3), 1743–1748. doi:10.1016/j.neuroimage.2011.03.034 CrossRef Google Scholar PubMed
- Hurtz, S., Woo, E., Kebets, V., Green, A. E., Zoumalan, C., Wang, B., & Apostolova, L. G. (2014). Age effects on cortical thickness in cognitively normal elderly individuals. Dementia & Geriatric Cognitive Disorders Extra, 4(2), 221–227. doi:10.1159/000362872 CrossRef Google Scholar
- Ivanoiu, A., Adam, S., Van der Linden, M., Salmon, E., Juillerat, A. C., Mulligan, R., & Seron, X. (2005). Memory evaluation with a new cued recall test in patients with mild cognitive impairment and Alzheimer’s disease. Journal of Neurology, (1), 47–55. doi:10.1007/s00415-005-0597-2 CrossRef Google Scholar PubMed
- Ivanoiu, A., Dricot, L., Gilis, N., Grandin, C., Lhommel, R., Quenon, L., &Hanseeuw, B. (2015). Classification of non-demented patients attending a memory clinic using the new diagnostic criteria for Alzheimer’s disease with disease-related biomarkers. Journal of Alzheimer’s Disease, 43(3), 835–847. doi:10.3233/JAD-140651 Google Scholar PubMed
- Jack, C. R. Jr. (2014). PART and SNAP. Acta Neuropatholigica, 128(6), 773–776. doi:10.1007/s00401-014-1362-3 CrossRef Google Scholar PubMed
- Jack, C. R. Jr., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P. S., & Trojanowski, J. Q. (2013). Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurology, 12(2), 207–216. doi:10.1016/S1474-4422(12)70291-0 CrossRef Google Scholar PubMed
- Jack, C. R. Jr., Lowe, V. J., Senjem, M. L., Weigand, S. D., Kemp, B. J., Shiung, M. M., & Petersen, R. C. (2008). 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain, 131(Pt 3), 665–680. doi:10.1093/brain/awm336 CrossRef Google Scholar
- Jongbloed, W., Bruggink, K. A., Kester, M. I., Visser, P. J., Scheltens, P., Blankenstein, M. A., & Veerhuis, R. (2015). Amyloid-beta oligomers relate to cognitive decline in Alzheimer’s disease. Journal of Alzheimer’s Disease, 45(1), 35–43. doi:10.3233/JAD-142136 Google Scholar
- Lemaitre, H., Goldman, A. L., Sambataro, F., Verchinski, B. A., Meyer-Lindenberg, A., Weinberger, D. R., &Mattay, V. S. (2012). Normal age-related brain morphometric changes: Nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiology of Aging, 33(3), 617.e1–9. doi:10.1016/j.neurobiolaging.2010.07.013 CrossRef Google Scholar PubMed
- Lerch, J. P., Pruessner, J. C., Zijdenbos, A., Hampel, H., Teipel, S. J., & Evans, A. C. (2005). Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cerebral Cortex, 15(7), 995–1001. doi:10.1093/cercor/bhh200 CrossRef Google Scholar PubMed
- Llado-Saz, S., Atienza, M., & Cantero, J. L. (2015). Increased levels of plasma amyloid-beta are related to cortical thinning and cognitive decline in cognitively normal elderly subjects. Neurobiology of Aging, 36(10), 2791–2797. doi:10.1016/j.neurobiolaging.2015.06.023 CrossRef Google Scholar PubMed
- Markesbery, W. R. (2010). Neuropathologic alterations in mild cognitive impairment: A review. Journal of Alzheimer’s Disease, 19(1), 221–228. doi:10.3233/JAD-2010-1220 CrossRef Google Scholar
- McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34(7), 939–944. CrossRef Google Scholar PubMed
- Mormino, E. C., Kluth, J. T., Madison, C. M., Rabinovici, G. D., Baker, S. L., Miller, B. L., … Alzheimer’s Disease Neuroimaging Initiative. (2009). Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects. Brain, 132(Pt 5), 1310–1323. doi:10.1093/brain/awn320 CrossRef Google Scholar PubMed
- Myers, R. (1990). Classical and modern regression with application(2nd Ed.). Boston, MA: Duxbury Press. Google Scholar
- Nho, K., Risacher, S. L., Crane, P. K., DeCarli, C., Glymour, M. M., & Habeck, C., … Alzheimer’s Disease Neuroimaging Initiative. (2012). Voxel and surface-based topography of memory and executive deficits in mild cognitive impairment and Alzheimer’s disease. Brain Imaging and Behavior, 6(4), 551–567. doi:10.1007/s11682-012-9203-2 CrossRef Google Scholar PubMed
- Ong, K., Villemagne, V. L., Bahar-Fuchs, A., Lamb, F., Chetelat, G., Raniga, P., & Rowe, C. C. (2013). (18)F-florbetaben Abeta imaging in mild cognitive impairment. Alzheimer’s Research & Therapy, 5(1), 4. doi:10.1186/alzrt158 CrossRef Google Scholar
- Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183–194. doi:10.1111/j.1365-2796.2004.01388.x CrossRef Google Scholar PubMed
- Pillon, B., Deweer, B., Michon, A., Malapani, C., Agid, Y., & Dubois, B. (1994). Are explicit memory disorders of progressive supranuclear palsy related to damage to striatofrontal circuits? Comparison with Alzheimer’s, Parkinson’s, and Huntington’s diseases. Neurology, 44(7), 1264–1270. CrossRef Google Scholar PubMed
- R Development Core Team. (2015). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Google Scholar PubMed
- Rabinovici, G. D., & Jagust, W. J. (2009). Amyloid imaging in aging and dementia: Testing the amyloid hypothesis in vivo. Behavioral Neurology, 21(1), 117–128. doi:10.3233/BEN-2009-0232 CrossRef Google Scholar
- Rami, L., Fortea, J., Bosch, B., Sole-Padulles, C., Llado, A., Iranzo, A., & Molinuevo, J. L. (2011). Cerebrospinal fluid biomarkers and memory present distinct associations along the continuum from healthy subjects to AD patients. Journal of Alzheimer’s Disease, 23(2), 319–326. doi:10.3233/JAD-2010-101422 Google Scholar PubMed
- Rami, L., Sole-Padulles, C., Fortea, J., Bosch, B., Llado, A., Antonell, A., & Molinuevo, J. L. (2012). Applying the new research diagnostic criteria: MRI findings and neuropsychological correlations of prodromal AD. International Journal of Geriatric Psychiatry, 27(2), 127–134. doi:10.1002/gps.2696 CrossRef Google Scholar PubMed
- Saka, E., Mihci, E., Topcuoglu, M. A., & Balkan, S. (2006). Enhanced cued recall has a high utility as a screening test in the diagnosis of Alzheimer’s disease and mild cognitive impairment in Turkish people. Archives of Clinical Neuropsychology, 21(7), 745–751. doi:10.1016/j.acn.2006.08.007 CrossRef Google Scholar
- Sarazin, M., Berr, C., De Rotrou, J., Fabrigoule, C., Pasquier, F., Legrain, S., & Dubois, B. (2007). Amnestic syndrome of the medial temporal type identifies prodromal AD: A longitudinal study. Neurology, 69(19), 1859–1867. doi:10.1212/01.wnl.0000279336.36610.f7 CrossRef Google Scholar PubMed
- Sarazin, M., Chauvire, V., Gerardin, E., Colliot, O., Kinkingnehun, S., de Souza, L. C., & Dubois, B. (2010). The amnestic syndrome of hippocampal type in Alzheimer’s disease: An MRI study. Journal of Alzheimer’s Disease, 22(1), 285–294. doi:10.3233/JAD-2010-091150 CrossRef Google Scholar PubMed
- Sperling, R. (2007). Functional MRI studies of associative encoding in normal aging, mild cognitive impairment, and Alzheimer’s disease. Annals of the New York Academy of Sciences, 1097, 146–155. doi:10.1196/annals.1379.009 CrossRef Google Scholar
- Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., & Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 280–292. doi:10.1016/j.jalz.2011.03.003 CrossRef Google Scholar
- Stevens, J. P. (2002). Applied multivariate statistics for the social sciences (4th Ed.). Mahwah, NJ: Lawrence Erlbaum Associates. Google Scholar
- Thambisetty, M., Wan, J., Carass, A., An, Y., Prince, J. L., & Resnick, S. M. (2010). Longitudinal changes in cortical thickness associated with normal aging. Neuroimage, 52(4), 1215–1223. doi:10.1016/j.neuroimage.2010.04.258 CrossRef Google Scholar PubMed
- Tounsi, H., Deweer, B., Ergis, A. M., Van der Linden, M., Pillon, B., Michon, A., & Dubois, B. (1999). Sensitivity to semantic cuing: An index of episodic memory dysfunction in early Alzheimer disease. Alzheimer Disease & Associated Disorders, 13(1), 38–46. CrossRef Google Scholar PubMed
- Trojanowski, J. Q., Vandeerstichele, H., Korecka, M., Clark, C. M., Aisen, P. S., Petersen, R. C., … Alzheimer’s Disease Neuroimaging Initiative. (2010). Update on the biomarker core of the Alzheimer’s Disease Neuroimaging Initiative subjects. Alzheimer’s & Dementia, 6(3), 230–238. doi:10.1016/j.jalz.2010.03.008 CrossRef Google Scholar PubMed
- Troyer, A. K., Murphy, K. J., Anderson, N. D., Craik, F. I., Moscovitch, M., Maione, A., &Gao, F. (2012). Associative recognition in mild cognitive impairment: Relationship to hippocampal volume and apolipoprotein E. Neuropsychologia, 50(14), 3721–3728. doi:10.1016/j.neuropsychologia.2012.10.018 CrossRef Google Scholar PubMed
- Troyer, A. K., Murphy, K. J., Anderson, N. D., Hayman-Abello, B. A., Craik, F. I., & Moscovitch, M. (2008). Item and associative memory in amnestic mild cognitive impairment: Performance on standardized memory tests. Neuropsychology, 22(1), 10–16. doi:10.1037/0894-4105.22.1.10 CrossRef Google Scholar PubMed
- Van der Linden, M., Coyette, F., Poitrenaud, J., Kalafat, M., Calicis, F., Wyns, C., … GRENEM. (2004). L’épreuve de rappel libre/rappel indicé à 16 items (RL/RI-16). In M. Van der Linden, S. Adam, A. Agniel, C. Baisset Mouly, F. Bardet, F. Coyette, B. Desgranges, B. Deweer, A.-M. Ergis, M.-C. Gély-Nargeot, L. Grimomprez, A. C. Juillerat, M. Kalafat, J. Poitrenaud, F. Sellal, & C. Thomas-Antérion (Eds.), L’évaluation des troubles de la mémoire. Présentation de quatre tests de mémoire épisodique (avec leur étalonnage). Marseille: Solal. Google Scholar
- Vandenberghe, R., Van Laere, K., Ivanoiu, A., Salmon, E., Bastin, C., Triau, E., & Brooks, D. J. (2010). 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: A phase 2 trial. Annals of Neurology, 68(3), 319–329. doi:10.1002/ana.22068 CrossRef Google Scholar
- Villemagne, V. L., Burnham, S., Bourgeat, P., Brown, B., Ellis, K. A., Salvado, O., … Australian Lifestyle Research Group. (2013). Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: A prospective cohort study. Lancet Neurology, 12(4), 357–367. doi:10.1016/S1474-4422(13)70044-9 CrossRef Google Scholar
- Villemagne, V. L., Pike, K. E., Chetelat, G., Ellis, K. A., Mulligan, R. S., Bourgeat, P., & Rowe, C. C. (2011). Longitudinal assessment of Abeta and cognition in aging and Alzheimer disease. Annals of Neurology, 69(1), 181–192. doi:10.1002/ana.22248 CrossRef Google Scholar PubMed
- Wagner, M., Wolf, S., Reischies, F. M., Daerr, M., Wolfsgruber, S., Jessen, F., & Wiltfang, J. (2012). Biomarker validation of a cued recall memory deficit in prodromal Alzheimer disease. Neurology, 78(6), 379–386. doi:10.1212/WNL.0b013e318245f447 CrossRef Google Scholar PubMed
- Wisse, L. E., Butala, N., Das, S. R., Davatzikos, C., Dickerson, B. C., Vaishnavi, S. N., … Alzheimer’s Disease Neuroimaging Initiative. (2015). Suspected non-AD pathology in mild cognitive impairment. Neurobiolology of Aging, 36(12), 3152–3162. doi:10.1016/j.neurobiolaging.2015.08.029 CrossRef Google Scholar PubMed
- Xie, J., Gabelle, A., Dorey, A., Garnier-Crussard, A., Perret-Liaudet, A., Delphin-Combe, F., & Krolak-Salmon, P. (2014). Initial memory deficit profiles in patients with a cerebrospinal fluid Alzheimer’s disease signature. Journal of Alzheimer’s Disease, 41(4), 1109–1116. doi:10.3233/JAD-131916 Google Scholar PubMed
Evidence suggests that Alzheimer’s disease (AD) biomarkers become abnormal many years before the emergence of clinical symptoms of AD, raising the possibility that biomarker levels measured in cognitively normal individuals would be associated with cognitive performance many years later. This study examined whether performance on computerized cognitive tests is associated with levels of cerebrospinal fluid (CSF) biomarkers of amyloid, tau, and phosphorylated tau (p-tau) obtained approximately 10 years earlier, when individuals were cognitively normal and primarily middle-aged.
Individuals from the BIOCARD cohort (mean age at testing=69 years) were tested on two computerized tasks hypothesized to rely on brain regions affected by the early accumulation of AD pathology: (1) a Paired Associates Learning (PAL) task (n=67) and (2) a visual search task (n=86).
In regression analyses, poorer performance on the PAL task was associated with higher levels of CSF p-tau obtained years earlier, whereas worse performance in the visual search task was associated with lower levels of CSF Aβ1-42.
These findings suggest that AD biomarker levels may be differentially predictive of specific cognitive functions many years later. In line with the pattern of early accumulation of AD pathology, the PAL task, hypothesized to rely on medial temporal lobe function, was associated with CSF p-tau, whereas the visual search task, hypothesized to rely on frontoparietal function, was associated with CSF amyloid. Studies using amyloid and tau PET imaging will be useful in examining these hypothesized relationships further. (JINS, 2016,22, 968–977)
- Albert, M., Soldan, A., Gottesman, R., McKhann, G., Sacktor, N., Farrington, L., & Selnes, O. (2014). Cognitive changes preceding clinical symptom onset of mild cognitive impairment and relationship to ApoE genotype. Current Alzheimer Research, 11(8), 773–784. CrossRef Google Scholar PubMed
- Anderson, E.J., Mannan, S.K., Husain, M., Rees, G., Sumner, P., Mort, D.J., & Kennard, C. (2007). Involvement of prefrontal cortex in visual search. Experimental Brain Research, 180(2), 289–302. CrossRef Google Scholar PubMed
- Anstey, K.J., Wood, J., Kerr, G., Caldwell, H., & Lord, S.R. (2009). Different cognitive profiles for single compared with recurrent fallers without dementia. Neuropsychology, 23(4), 500–508. CrossRef Google Scholar PubMed
- Aschenbrenner, A.J., Balota, D.A., Fagan, A.M., Duchek, J.M., Benzinger, T.L., & Morris, J.C. (2015). Alzheimer disease cerebrospinal fluid biomarkers moderate baseline differences and predict longitudinal change in attentional control and episodic memory composites in the adult children study. Journal of the International Neuropsychological Society, 21(8), 573–583. CrossRef Google Scholar PubMed
- Aschenbrenner, A.J., Balota, D.A., Tse, C.S., Fagan, A.M., Holtzman, D.M., Benzinger, T.L., &Morris, J.C. (2015). Alzheimer disease biomarkers, attentional control, and semantic memory retrieval: Synergistic and mediational effects of biomarkers on a sensitive cognitive measure in non-demented older adults. Neuropsychology, 29(3), 368–381. CrossRef Google Scholar PubMed
- Bennett, I.J., Barnes, K.A., Howard, J.H. Jr., & Howard, D.V. (2009). An abbreviated implicit spatial context learning task that yields greater learning. Behavioral Research Methods, 41(2), 391–395. CrossRef Google Scholar PubMed
- Bilgel, M., Jedynak, B., Wong, D.F., Resnick, S.M., & Prince, J.L. (2015). Temporal trajectory and progression score estimation from voxelwise longitudinal imaging measures: Application to amyloid imaging. Information Processing in Medical Imaging, 24, 424–436. Google Scholar PubMed
- Blacker, D., Lee, H., Muzikansky, A., Martin, E.C., Tanzi, R., McArdle, J.J., & Albert, M. (2007). Neuropsychological measures in normal individuals that predict subsequent cognitive decline. Archives of Neurology, 64(6), 862–871. CrossRef Google Scholar PubMed
- Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H., & Del Tredici, K. (2006). Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathologica, 112(4), 389–404. CrossRef Google Scholar PubMed
- Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82(4), 239–259. CrossRef Google Scholar PubMed
- Chun, M.M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71. CrossRef Google Scholar PubMed
- Corbetta, M., & Shulman, G.L. (1998). Human cortical mechanisms of visual attention during orienting and search. Philosophical Transactions of the Royal Society B: Biological Sciences, 353(1373), 1353–1362. CrossRef Google Scholar PubMed
- Cummings, J.L., Mega, M., Gray, K., Rosenberg-Thompson, S., Carusi, D.A., & Gornbein, J. (1994). The Neuropsychiatric Inventory: Comprehensive assessment of psychopathology in dementia. Neurology, 44(12), 2308–2314. CrossRef Google Scholar PubMed
- de Jager, C.A., Milwain, E., & Budge, M. (2002). Early detection of isolated memory deficits in the elderly: The need for more sensitive neuropsychological tests. Psychological Medicine, 32(3), 483–491. CrossRef Google Scholar PubMed
- de Rover, M., Pironti, V.A., McCabe, J.A., Acosta-Cabronero, J., Arana, F.S., Morein-Zamir, S., & Sahakian, B.J. (2011). Hippocampal dysfunction in patients with mild cognitive impairment: A functional neuroimaging study of a visuospatial paired associates learning task. Neuropsychologia, 49(7), 2060–2070. CrossRef Google Scholar PubMed
- Donner, T.H., Kettermann, A., Diesch, E., Ostendorf, F., Villringer, A., & Brandt, S.A. (2002). Visual feature and conjunction searches of equal difficulty engage only partially overlapping frontoparietal networks. Neuroimage, 15(1), 16–25. CrossRef Google Scholar PubMed
- Egerhazi, A., Berecz, R., Bartok, E., & Degrell, I. (2007). Automated Neuropsychological Test Battery (CANTAB) in mild cognitive impairment and in Alzheimer’s disease. Progress in Neuropsychopharmacology & Biological Psychiatry, 31(3), 746–751. CrossRef Google Scholar PubMed
- Fagan, A.M., Head, D., Shah, A.R., Marcus, D., Mintun, M., Morris, J.C., & Holtzman, D.M. (2009). Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly. Annals of Neurology, 65(2), 176–183. CrossRef Google Scholar PubMed
- Fagan, A.M., Roe, C.M., Xiong, C., Mintun, M.A., Morris, J.C., & Holtzman, D.M. (2007). Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Archives of Neurology, 64(3), 343–349. CrossRef Google Scholar PubMed
- Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. CrossRef Google Scholar PubMed
- Glodzik, L., de Santi, S., Tsui, W.H., Mosconi, L., Zinkowski, R., Pirraglia, E., & de Leon, M.J. (2011). Phosphorylated tau 231, memory decline and medial temporal atrophy in normal elders. Neurobiology of Aging, 32(12), 2131–2141. CrossRef Google Scholar PubMed
- Glodzik, L., Mosconi, L., Tsui, W., de Santi, S., Zinkowski, R., Pirraglia, E., & de Leon, M.J. (2012). Alzheimer’s disease markers, hypertension, and gray matter damage in normal elderly. Neurobiology of Aging, 33(7), 1215–1227. CrossRef Google Scholar PubMed
- Heitz, R.P. (2014). The speed-accuracy tradeoff: History, physiology, methodology, and behavior. Frontiers in Neuroscience, 8, 150. CrossRef Google Scholar PubMed
- Howieson, D.B., Carlson, N.E., Moore, M.M., Wasserman, D., Abendroth, C.D., Payne-Murphy, J., &Kaye, J.A. (2008). Trajectory of mild cognitive impairment onset. Journal of the International Neuropsychological Society, 14(2), 192–198. CrossRef Google Scholar PubMed
- Hughes, C.P., Berg, L., Danziger, W.L., Coben, L.A., & Martin, R.L. (1982). A new clinical scale for the staging of dementia. British Journal of Psychiatry, 140, 566–572. CrossRef Google Scholar
- Insel, P.S., Mattsson, N., Mackin, R.S., Kornak, J., Nosheny, R., Tosun-Turgut, D., & Weiner, M.W. (2015). Biomarkers and cognitive endpoints to optimize trials in Alzheimer’s disease. Annals of Clinical and Translational Neurology, 2(5), 534–547. CrossRef Google Scholar PubMed
- Jack, C.R. Jr., Knopman, D.S., Jagust, W.J., Petersen, R.C., Weiner, M.W., Aisen, P.S., & Trojanowski, J.Q. (2013). Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurology, 12(2), 207–216. CrossRef Google Scholar PubMed
- Junkkila, J., Oja, S., Laine, M., & Karrasch, M. (2012). Applicability of the CANTAB-PAL computerized memory test in identifying amnestic mild cognitive impairment and Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 34(2), 83–89. CrossRef Google Scholar PubMed
- Lenehan, M.E., Summers, M.J., Saunders, N.L., Summers, J.J., & Vickers, J.C. (2016). Does the Cambridge Automated Neuropsychological Test Battery (CANTAB) distinguish between cognitive domains in healthy older adults? Assessment, 15, 192–195. Google Scholar
- Li, G., Millard, S.P., Peskind, E.R., Zhang, J., Yu, C.E., Leverenz, J.B., & Montine, T.J. (2014). Cross-sectional and longitudinal relationships between cerebrospinal fluid biomarkers and cognitive function in people without cognitive impairment from across the adult life span. JAMA Neurology, 71(6), 742–751. CrossRef Google Scholar PubMed
- Manelis, A., & Reder, L.M. (2012). Procedural learning and associative memory mechanisms contribute to contextual cueing: Evidence from fMRI and eye-tracking. Learning & Memory, 19(11), 527–534. CrossRef Google Scholar PubMed
- Mattsson, N., Insel, P., Nosheny, R., Trojanowski, J.Q., Shaw, L.M., Jack, C.R. Jr., & Weiner, M. (2014). Effects of cerebrospinal fluid proteins on brain atrophy rates in cognitively healthy older adults. Neurobiology of Aging, 35(3), 614–622. CrossRef Google Scholar PubMed
- Mattsson, N., Insel, P.S., Nosheny, R., Tosun, D., Trojanowski, J.Q., Shaw, L.M., & Weiner, M.W. (2014). Emerging beta-amyloid pathology and accelerated cortical atrophy. JAMA Neurology, 71(6), 725–734. CrossRef Google Scholar PubMed
- McLaughlin, P.M., Borrie, M.J., & Murtha, S.J. (2010). Shifting efficacy, distribution of attention and controlled processing in two subtypes of mild cognitive impairment: Response time performance and intraindividual variability on a visual search task. Neurocase, 16(5), 408–417. CrossRef Google Scholar PubMed
- Moghekar, A., Goh, J., Li, M., Albert, M., & O’Brien, R.J. (2012). Cerebrospinal fluid Abeta and tau level fluctuation in an older clinical cohort. Archives of Neurology, 69(2), 246–250. CrossRef Google Scholar
- Moghekar, A., Li, S., Lu, Y., Li, M., Wang, M.C., Albert, M., &O’Brien, R. (2013). CSF biomarker changes precede symptom onset of mild cognitive impairment. Neurology, 81(20), 1753–1758. CrossRef Google Scholar PubMed
- Morris, J.C. (1993). The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology, 43(11), 2412–2414. CrossRef Google Scholar PubMed
- Muller-Oehring, E.M., Schulte, T., Rohlfing, T., Pfefferbaum, A., & Sullivan, E.V. (2013). Visual search and the aging brain: Discerning the effects of age-related brain volume shrinkage on alertness, feature binding, and attentional control. Neuropsychology, 27(1), 48–59. CrossRef Google Scholar PubMed
- Pettigrew, C., Soldan, A., Moghekar, A., Wang, M.C., Gross, A.L., O’Brien, R., & Albert, M. (2015). Relationship between cerebrospinal fluid biomarkers of Alzheimer’s disease and cognition in cognitively normal older adults. Neuropsychologia, 78, 63–72. CrossRef Google Scholar PubMed
- Reitan, R.M. (1958). Validity of the trail making test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271–276. CrossRef Google Scholar
- Rey, A. (1941). L’examen psychologique dans les cas d’encephalopathie traumatique. Archives de Psychologie, 28, 286–340. Google Scholar
- Roe, C.M., Fagan, A.M., Grant, E.A., Marcus, D.S., Benzinger, T.L., Mintun, M.A., & Morris, J.C. (2011). Cerebrospinal fluid biomarkers, education, brain volume, and future cognition. Archives of Neurology, 68(9), 1145–1151. CrossRef Google Scholar PubMed
- Rosler, A., Mapstone, M.E., Hays, A.K., Mesulam, M.M., Rademaker, A., Gitelman, D.R., &Weintraub, S. (2000). Alterations of visual search strategy in Alzheimer’s disease and aging. Neuropsychology, 14(3), 398–408. CrossRef Google Scholar PubMed
- Sahakian, B.J., Morris, R.G., Evenden, J.L., Heald, A., Levy, R., Philpot, M., & Robbins, T.W. (1988). A comparative study of visuospatial memory and learning in Alzheimer-type dementia and Parkinson’s disease. Brain, 111(Pt 3), 695–718. CrossRef Google Scholar PubMed
- Soldan, A., Pettigrew, C., Li, S., Wang, M.C., Moghekar, A., Selnes, O.A., & O’Brien, R. (2013). Relationship of cognitive reserve and cerebrospinal fluid biomarkers to the emergence of clinical symptoms in preclinical Alzheimer’s disease. Neurobiology of Aging, 34(12), 2827–2834. CrossRef Google Scholar PubMed
- Soldan, A., Pettigrew, C., Wang, M.C., Moghekar, A., O’Brien, R., Selnes, O., & Albert, M. (in press). Hypothetical preclinical Alzheimer’s disease groups and longitudinal cognitive change. JAMA Neurology. Google Scholar PubMed
- Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M., & Phelps, C.H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 280–292. CrossRef Google Scholar PubMed
- Steenland, K., Zhao, L., Goldstein, F., Cellar, J., & Lah, J. (2014). Biomarkers for predicting cognitive decline in those with normal cognition. Journal of Alzheimer’s Disease, 40(3), 587–594. Google Scholar PubMed
- Stricker, N.H., Dodge, H.H., Dowling, N.M., Han, S.D., Erosheva, E.A., & Jagust, W.J. (2012). CSF biomarker associations with change in hippocampal volume and precuneus thickness: Implications for the Alzheimer’s pathological cascade. Brain Imaging and Behavior, 6(4), 599–609. CrossRef Google Scholar PubMed
- Sutphen, C.L., Jasielec, M.S., Shah, A.R., Macy, E.M., Xiong, C., Vlassenko, A.G., & Fagan, A.M. (2015). Longitudinal cerebrospinal fluid biomarker changes in preclinical Alzheimer disease during middle age. JAMA Neurology, 72(9), 1029–1042. CrossRef Google Scholar PubMed
- Tales, A., Bayer, A.J., Haworth, J., Snowden, R.J., Philips, M., & Wilcock, G. (2011). Visual search in mild cognitive impairment: A longitudinal study. Journal of Alzheimer’s Disease, 24(1), 151–160. Google Scholar PubMed
- Tales, A., Haworth, J., Nelson, S., Snowden, R.J., & Wilcock, G. (2005). Abnormal visual search in mild cognitive impairment and Alzheimer’s disease. Neurocase, 11(1), 80–84. CrossRef Google Scholar PubMed
- Thal, D.R., Rub, U., Orantes, M., & Braak, H. (2002). Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology, 58(12), 1791–1800. CrossRef Google Scholar PubMed
- Tosun, D., Schuff, N., Shaw, L.M., Trojanowski, J.Q., & Weiner, M.W. (2011). Relationship between CSF biomarkers of Alzheimer’s disease and rates of regional cortical thinning in ADNI data. Journal of Alzheimer’s Disease, 26(Suppl. 3), 77–90. Google Scholar PubMed
- Viskontas, I.V., Boxer, A.L., Fesenko, J., Matlin, A., Heuer, H.W., Mirsky, J., &Miller, B.L. (2011). Visual search patterns in semantic dementia show paradoxical facilitation of binding processes. Neuropsychologia, 49(3), 468–478. CrossRef Google Scholar PubMed
- Vos, S.J., Xiong, C., Visser, P.J., Jasielec, M.S., Hassenstab, J., Grant, E.A., & Fagan, A.M. (2013). Preclinical Alzheimer’s disease and its outcome: A longitudinal cohort study. The Lancet Neurology, 12(10), 957–965. CrossRef Google Scholar PubMed
- Whelan, R. (2008). Effective analysis of reaction time data. The Psychological Record, 58, 475–482. CrossRef Google Scholar
- Wilson, R.S., Leurgans, S.E., Boyle, P.A., & Bennett, D.A. (2011). Cognitive decline in prodromal Alzheimer disease and mild cognitive impairment. Archives of Neurology, 68(3), 351–356. CrossRef Google Scholar PubMed
- Yesavage, J.A., Brink, T.L., Rose, T.L., Lum, O., Huang, V., Adey, M., & Leirer, V.O. (1982). Development and validation of a geriatric depression screening scale: A preliminary report. Journal of Psychiatric Research, 17(1), 37–49. CrossRef Google Scholar PubMed
- Yotter, R.A., Doshi, J., Clark, V., Sojkova, J., Zhou, Y., Wong, D.F., & Davatzikos, C. (2013). Memory decline shows stronger associations with estimated spatial patterns of amyloid deposition progression than total amyloid burden. Neurobiology of Aging, 34(12), 2835–2842. CrossRef Google Scholar PubMed