CE for Reading JINS

//CE for Reading JINS
CE for Reading JINS2017-12-27T12:21:25+00:00

3.5 CE Credits: JINS Special Issue: INS 50th Anniversary - Theory & Practice (JINS 23:9-10, 2017): CE Bundle 1

3.5 Hours of Continuing Education credits are available for reading this series. You must read ALL SEVEN critical reviews in order to receive credit, and you must pass the evaluation with a score of at least 75%.

On this page you may review the learning objectives for this series, as well as the titles, authors, and abstracts for each critical review.

CLICK HERE to view this overall issue on the Cambridge University Press website.

LEARNING OBJECTIVES FOR THIS SERIES:

At the completion of reading these materials, learners will be able to:

  1. Describe current knowledge of brain lateralization and asymmetry based on recent genetic and neuroimaging studies.
  2. Discuss how understanding of affect influences theories of cognition.
  3. Explain different theoretical viewpoints about the role of the medial temporal lobes (MTL) in memory and other cognitive domains.
  4. Discuss the history and latest findings regarding how the brain processes language
  5. Critique the relationship between function and anatomy, and develop clear operational definitions, for the category of brain abilities considered "frontal" or " executive" functions.
  6. Describe how cognition impacts movement and the underlying neuroanatomy involved.
  7. List important factors that can influence neuropsychological test interpretation.

INDIVIDUAL ARTICLE TITLES AND AUTHORS:

The Many Sides of Hemispheric Asymmetry: A Selective Review and Outlook

Michael C. Corballis, Isabelle S. Häberling

Hemispheric asymmetry is commonly viewed as a dual system, unique to humans, with the two sides of the human brain in complementary roles. To the contrary, modern research shows that cerebral and behavioral asymmetries are widespread in the animal kingdom, and that the concept of duality is an oversimplification. The brain has many networks serving different functions; these are differentially lateralized, and involve many genes. Unlike the asymmetries of the internal organs, brain asymmetry is variable, with a significant minority of the population showing reversed asymmetries or the absence of asymmetry. This variability may underlie the divisions of labor and the specializations that sustain social life. (JINS, 2017, 23, 710–718)

Emotions Are Rising: The Growing Field of Affect Neuropsychology

Skye McDonald

Thirty years ago, the neuropsychology of emotion started to emerge as a mainstream topic. Careful examination of individual patients showed that emotion, like memory, language, and so on, could be differentially affected by brain disorders, especially in the right hemisphere. Since then, there has been accelerating interest in uncovering the neural architecture of emotion, and the major steps in this process of discovery over the past 3 decades are detailed in this review. In the 1990s, magnetic resonance imaging (MRI) scans provided precise delineation of lesions in the amygdala, medial prefrontal cortex, insula and somatosensory cortex as underpinning emotion disorders. At the same time, functional MRI revealed activation that was bilateral and also lateralized according to task demands. In the 2000s, converging evidence suggested at least two routes to emotional responses: subcortical, automatic and autonomic responses and slower, cortical responses mediating cognitive processing. The discovery of mirror neurons in the 1990s reinvigorated older views that simulation was the means to recognize emotions and empathize with others. More recently, psychophysiological research, revisiting older Russian paradigms, has contributed new insights into how autonomic and other physiological indices contribute to decision making (the somatic marker theory), emotional simulation, and social cognition. Finally, this review considers the extent to which these seismic changes in understanding emotional processes in clinical disorders have been reflected in neuropsychological practice. (JINS, 2017, 23, 719–731)

Neuropsychological Investigations of Human Amnesia: Insights Into the Role of the Medial Temporal Lobes in Cognition

Mieke Verfaellie Margaret M. Keane

The past 30 years of research on human amnesia has yielded important changes in our understanding of the role of the medial temporal lobes (MTL) in memory. On the one hand, this body of evidence has highlighted that not all types of memory are impaired in patients with MTL lesions. On the other hand, this research has made apparent that the role of the MTL extends beyond the domain of long-term memory, to include working memory, perception, and future thinking. In this article, we review the discoveries and controversies that have characterized this literature and that set the stage for a new conceptualization of the role of the MTL in cognition. This shift toward a more nuanced understanding of MTL function has direct relevance for a range of clinical disorders in which the MTL is implicated, potentially shaping not only theoretical understanding but also clinical practice. (JINS, 2017, 23, 732–740)

What Do Language Disorders Reveal about Brain–Language Relationships? From Classic Models to Network Approaches

Nina F. Dronkers, Maria V. Ivanova and Juliana V. Baldo

Studies of language disorders have shaped our understanding of brain–language relationships over the last two centuries. This article provides a review of this research and how our thinking has changed over the years regarding how the brain processes language. In the 19th century, a series of famous case studies linked distinct speech and language functions to specific portions of the left hemisphere of the brain, regions that later came to be known as Broca’s and Wernicke’s areas. One hundred years later, the emergence of new brain imaging tools allowed for the visualization of brain injuries in vivo that ushered in a new era of brain-behavior research and greatly expanded our understanding of the neural processes of language. Toward the end of the 20th century, sophisticated neuroimaging approaches allowed for the visualization of both structural and functional brain activity associated with language processing in both healthy individuals and in those with language disturbance. More recently, language is thought to be mediated by a much broader expanse of neural networks that covers a large number of cortical and subcortical regions and their interconnecting fiber pathways. Injury to both grey and white matter has been seen to affect the complexities of language in unique ways that have altered how we think about brain–language relationships. The findings that support this paradigm shift are described here along with the methodologies that helped to discover them, with some final thoughts on future directions, techniques, and treatment interventions for those with communication impairments. (JINS, 2017, 23, 741–754)

What Do Language Disorders Reveal about Brain–Language Relationships? From Classic Models to Network Approaches

Nina F. Dronkers, Maria V. Ivanova and Juliana V. Baldo

Studies of language disorders have shaped our understanding of brain–language relationships over the last two centuries. This article provides a review of this research and how our thinking has changed over the years regarding how the brain processes language. In the 19th century, a series of famous case studies linked distinct speech and language functions to specific portions of the left hemisphere of the brain, regions that later came to be known as Broca’s and Wernicke’s areas. One hundred years later, the emergence of new brain imaging tools allowed for the visualization of brain injuries in vivo that ushered in a new era of brain-behavior research and greatly expanded our understanding of the neural processes of language. Toward the end of the 20th century, sophisticated neuroimaging approaches allowed for the visualization of both structural and functional brain activity associated with language processing in both healthy individuals and in those with language disturbance. More recently, language is thought to be mediated by a much broader expanse of neural networks that covers a large number of cortical and subcortical regions and their interconnecting fiber pathways. Injury to both grey and white matter has been seen to affect the complexities of language in unique ways that have altered how we think about brain–language relationships. The findings that support this paradigm shift are described here along with the methodologies that helped to discover them, with some final thoughts on future directions, techniques, and treatment interventions for those with communication impairments. (JINS, 2017, 23, 741–754)

Fifty Years of Prefrontal Cortex Research: Impact on Assessment

Paul W. Burgess and Donald T. Stuss

Our knowledge of the functions of the prefrontal cortex, often called executive, supervisory, or control, has been transformed over the past 50 years. After operationally defining terms for clarification, we review the impact of advances in functional, structural, and theoretical levels of understanding upon neuropsychological assessment practice as a means of identifying 11 principles/challenges relating to assessment of executive function. Three of these were already known 50 years ago, and 8 have been confirmed or emerged since. Key themes over this period have been the emergence of the use of naturalistic tests to address issues of “ecological validity”; discovery of the complexity of the frontal lobe control system; invention of new tests for clinical use; development of key theoretical frameworks that address the issue of the role of prefrontal cortex systems in the organization of human cognition; the move toward considering brain systems rather than brain regions; the advent of functional neuroimaging, and its emerging integration into clinical practice. Despite these huge advances, however, practicing neuropsychologists are still desperately in need of new ways of measuring executive function. We discuss pathways by which this might happen, including decoupling the two levels of explanation (information processing; brain structure) and integrating very recent technological advances into the neuropsychologist’s toolbox. (JINS, 2017, 23, 755–767)

The Neuropsychology of Movement and Movement Disorders: Neuroanatomical and Cognitive Considerations

Kathleen Y. Haaland, Richard P. Dum, Pratik K. Mutha, Peter L. Strick, and Alexander I. Tröster

This paper highlights major developments over the past two to three decades in the neuropsychology of movement and its disorders. We focus on studies in healthy individuals and patients, which have identified cognitive contributions to movement control and animal work that has delineated the neural circuitry that makes these interactions possible. We cover advances in three major areas: (1) the neuroanatomical aspects of the “motor” system with an emphasis on multiple parallel circuits that include cortical, corticostriate, and corticocerebellar connections; (2) behavioral paradigms that have enabled an appreciation of the cognitive influences on the preparation and execution of movement; and (3) hemispheric differences (exemplified by limb praxis, motor sequencing, and motor learning). Finally, we discuss the clinical implications of this work, and make suggestions for future research in this area. (JINS, 2017, 23, 768–777)

Neuropsychological Assessment: Past and Future

Kaitlin B. Casaletto and Robert K. Heaton

Neuropsychological assessment tools are the staple of our field. The development of standardized metrics sensitive to brain-behavior relationships has shaped the neuropsychological questions we can ask, our understanding of discrete brain functions, and has informed the detection and treatment of neurological disorders. We identify key turning points and innovations in neuropsychological assessment over the past 40–50 years that highlight how the tools used in common practice today came to be. Also selected for emphasis are several exciting lines of research and novel approaches that are underway to further probe and characterize brain functions to enhance diagnostic and treatment outcomes. We provide a brief historical review of different clinical neuropsychological assessment approaches (Lurian, Flexible and Fixed Batteries, Boston Process Approach) and critical developments that have influenced their interpretation (normative standards, cultural considerations, longitudinal change, common metric batteries, and translational assessment constructs). Lastly, we discuss growing trends in assessment including technological advances, efforts to integrate neuropsychology across disciplines (e.g., primary care), and changes in neuropsychological assessment infrastructure. Neuropsychological assessment has undergone massive growth in the past several decades. Nonetheless, there remain many unanswered questions and future challenges to better support measurement tools and translate assessment findings into meaningful recommendations and treatments. As technology and our understanding of brain function advance, efforts to support infrastructure for both traditional and novel assessment approaches and integration of complementary brain assessment tools from other disciplines will be integral to inform brain health treatments and promote the growth of our field. (JINS, 2017, 23, 778–790)