3.5 CE Credits: JINS Special Issue: INS 50th Anniversary - Theory & Practice (JINS 23:9-10, 2017): CE Bundle 1

apa-logo_white_screenThe International Neuropsychological Society is approved by the American Psychological Association to sponsor continuing education for psychologists. The International Neuropsychological Society maintains responsibility for this program and its content.
Educational Objectives
  1. Describe current knowledge of brain lateralization and asymmetry based on recent genetic and neuroimaging studies.
  2. Discuss how understanding of affect influences theories of cognition.
  3. Explain different theoretical viewpoints about the role of the medial temporal lobes (MTL) in memory and other cognitive domains.
  4. Discuss the history and latest findings regarding how the brain processes language
  5. Critique the relationship between function and anatomy, and develop clear operational definitions, for the category of brain abilities considered "frontal" or " executive" functions.
  6. Describe how cognition impacts movement and the underlying neuroanatomy involved.
  7. List important factors that can influence neuropsychological test interpretation.

Course Information
Target Audience:Intermediate
Availability:Date Available: 2018-03-19
You may obtain CE for this JINS package at any time.
Offered for CEYes
CostMembers $35
Non-Members $52.50
Refund PolicyThis JINS package is not eligible for refunds
CE Credits3.5


The International Neuropsychological Society is celebrating its 50th anniversary (1967-2017). Over the course of these 50 years, members of the society have made great strides in advancing our knowledge of the workings of the human brain both in health and in disease. For the past 2 decades, many of these advances have appeared in the society’s flagship scientific outlet, the Journal of the International Neuropsychological Society. To commemorate the INS 50th anniversary, the two previous JINS editors, Igor Grant and Kathleen Haaland, joined the current editor, Stephen Rao, in organizing this special double issue of JINS. We have invited some of our leading senior investigators, most of whom have served in leadership positions in the INS, to write reviews in their areas of expertise. These reviews are designed to highlight scientific discoveries that have contributed to progress in the field of neuropsychology over the past 50 years. The authors were instructed to selectively discuss landmark discoveries that have had a lasting impact in advancing scientific knowledge rather than to provide comprehensive literature reviews. In addition, the authors were asked to provide their predictions regarding scientific directions of their field over the coming decade.

The papers reflect in a remarkable way the evolution of neuropsychology over the past 5 decades. There is a movement from viewing neurocognitive change from a static anatomic perspective to one that embraces the notion of functional connectivity within neural circuits, and considers how imbalances in circuitry crosstalk may be reflected in the kinds of processes that we neuropsychologists study, for example, executive function, components of memory and attention, and so forth. The field of neuropsychology now interacts with technological advances in structural and functional brain imaging, electrophysiological methods, fluid biomarkers (e.g., cerebral spinal fluid), and genetics, to name a few. The increased emphasis on observational longitudinal designs has provided a more comprehensive understanding of the evolution of neuropsychological disorders. Finally, while neuropsychology has traditionally focused on assessment, each of these reviews also highlight advances made in the treatment of neuropsychological disorders.

We have organized this special issue into four sections: Brain Systems and Assessment, Neurological Disorders, Neuropsychiatric Disorders, and Pediatric Disorders. In the following sections of this introduction, we highlight some of the key take-home messages from these scholarly reviews. It is important to note that all of these invited reviews were peer reviewed and required multiple revisions before acceptance. Another caveat is that we do not pretend to have covered the entire scope of the scientific underpinnings of neuropsychology and we are sure that we have omitted several key research areas in our diverse field. Likewise, we recognize that only a small percentage of our thought leaders in neuropsychology were able to be invited to contribute to this special issue.

Brain Systems And Assessment

In this section, Corballis emphasizes that hemispheric asymmetry exists in great apes as well as humans (although to a lesser extent in the former), is characterized by significant individual variability and complex genetic influences, and encompasses a broader range of functions and associated neural networks than initially thought before more recent neuroimaging studies.

McDonald emphasizes significant developments in our understanding of emotion, including delineation of the neuroanatomical substrates for different aspects of emotion, the influence of emotion on cognitive processes, and the clinical implications of emotion, which necessitate the need to directly examine emotion clinically using newly developed normative procedures.

Verfaellie and Keane discuss a shift toward a more nuanced understanding of the medial temporal lobes (MTL) in human memory and amnesia over the past 30 years. On the one hand, this body of evidence has highlighted that not all types of memory are impaired in patients with MTL lesions. On the other hand, this research has made apparent that the role of the MTL extends beyond the domain of long-term memory, to include working memory, perception, and future thinking.

Dronkers and Baldo emphasize that the study of language has had a major impact on our understanding of brain-behavior relationships. This paper highlights well-known historical case studies with updates using structural MRI and functional imaging in group studies which show that language, like other complex cognitive processes, is dependent upon neural systems rather than single cortical loci.

Stuss and Burgess review how our knowledge of prefrontal functions in the context of neuropsychological assessment has been transformed over the past 50 years with key themes, including development of theoretical frameworks that address the role of prefrontal systems in the organization of human cognition, the importance of naturalistic tests, the emerging integration of functional imaging into clinical practice, and how we might develop new ways to measure executive function to fill existing gaps.

Haaland, Dum, Mutha, Strick, and Troster, a multidisciplinary group of experts in movement and movement disorders, summarize the influence of animal and human studies in showing that the corticospinal tract includes projections from multiple premotor regions as well as the motor cortex, that cognition strongly impacts even what appear to be simple motor skills, and that differential connectivity among cortical, cerebellar, and striatal regions influences normal movement and impairment with movement disorders and cortical lesions.

Casaletto and Heaton identify historical pioneers and their approaches to neuropsychological assessment as well as factors that have influenced neuropsychological interpretation (e.g., normative standards, cultural considerations, quantifying longitudinal change). They also emphasize the importance of enhancing ecological validity and ways that technological advances have impacted assessment.

Neurological Disorders

Hermann, Loring, and Wilson discuss five major paradigm shifts that have occurred within the neuropsychology of epilepsy, including departure from syndrome-specific pathophysiology, bidirectional comorbidities, quality of life, surgical outcomes, and iatrogenic treatment effects. Unlike most other disorders evaluated by neuropsychologists, surgical interventions have played an important role. This review focuses on the neuropsychological consequences of different surgical interventions and the re-emergence of electroencephalography as an important research tool for probing cognitive dysfunction.

Yeates, Levin, and Ponsford highlight progress made through studies of traumatic brain injury in adults and children. The study focuses on contributions of advances in neuroimaging in characterizing the pathophysiology of traumatic brain injury, the impact of non-injury factors on outcomes (pre-morbid factors), and medical and non-medical interventions to improve outcomes.

Bondi, Edmonds, and Salmon survey historical advances in Alzheimer’s disease, beginning with studies profiling the neuropsychological deficits associated with AD and its differentiation from other dementias, identification of specific cognitive mechanisms affected by neuropathological substrates, the shift in focus to the study of prodromal stages of neurodegenerative disease (mild cognitive impairment), and the rise of imaging and other biomarkers to characterize preclinical disease before the development of significant cognitive decline.

Benedict, DeLuca, Enzinger, Geurts, Krupp, and Rao highlight advances made in the areas of neuropathology, neuroimaging, diagnosis, and treatment that pertain to the neuropsychological aspects of multiple sclerosis (MS). This review focuses on the discovery that MS produces pathological lesions of gray matter that have consequences for cognitive functions, the use of multimodal imaging that integrates structural and functional imaging methods to better understand cognitive test performance and functional reserve, screening and comprehensive assessment of cognitive disorders including pediatric MS, and outcome studies in cognitive rehabilitation.

Neuropsychiatric Disorders

Sullivan shows us how early careful observations of neuropsychological patterns in alcoholism led to modern neuroimaging confirmations and deepening understanding not only of the structural neuroanatomy underlying alcoholism, but also to new appreciation of functional connectivity disruptions. Ongoing studies now hope to relate such functional connectivity changes not only to specific cognitive profiles but also to related deficits in self-regulation, impulse control, and reward processing that are linked to such neurocognitive deficits.

Saloner and Cysique summarize the progress from earliest reports of neurocognitive changes, first reported in 1987, to the delineation of the specific syndromes of HIV-associated neurocognitive disorders (HAND). The authors demonstrate that neuropsychology has led the way in appreciating that the brain continues to be affected by the HIV process despite good control of virus by modern antiretroviral treatments; and they note that the consequences of these persisting mild cognitive disorders include disturbance in quality of life and everyday functioning in those affected by HIV.

Waters and Mayberg present depression as a failure in the coordination of distributed frontal networks, and discuss how differential functional brain responses to different therapies, for example, pharamacotherapy versus cognitive behavioral therapy (CBT), provide for a better understanding of the component elements of depression. They suggest that increases in adaptive functionality of dorsal frontal networks controlling attention and executive function may be specifically targeted by CBT, whereas antidepressant drugs may reduce the hyper-reactivity of ventral corticolimbic structures.

Seidman and Mirsky note that the view of schizophrenia has shifted from one of “functional psychosis” (i.e., with no known brain substrate) to that of a neurodevelopmental disorder. Neuropsychological deficits, once viewed as the result of psychosis, are now thought to be a prodrome of the disorder, since they are found many years before the onset of symptoms and occur in biological relatives who never develop psychosis. They note a steady increase in convergence of neuropsychological, structural, and functional brain mapping toward understanding of the neurodevelopmental events that lead to these symptoms, such as perinatal insults, abnormal neural network organization, faulty pruning, and genetic alterations.

Gonzalez, Pacheco-Colón, Duperrouzel, and Hawes address progress in the field of cannabis use, which was just being born 50 years ago when the INS was founded. The earliest reports were a few experimental cognitive studies and case reports. Now, there is a vast neuropsychological literature and, as with studies on alcoholism and depression, an increased emphasis on structural-functional brain correlates and their relation to neurodevelopmental outcomes. While they note that evidence for persisting adverse effects of moderate marijuana use by adults is inconclusive, there is increasing concern that marijuana may not be so benign in children, adolescents, and extremely heavy cannabis users.

Pediatric Disorders

Fein and Helt indicate that the pace of research in autism has accelerated moving from an initial focus on behavior and cognition to advances associated with the incorporation of imaging and genetics. Despite these recent advances, a coherent picture of the syndrome at either a phenotypic or biological level has not emerged. They provide a roadmap for future progress, in which studies include individuals defined by social impairment without regard to repetitive behaviors to form narrowly defined subtypes, focus on characteristics that are less influenced by environmental factors, study children as early as possible thereby minimizing environmental influence, emphasize the longitudinal course, examine the relationship between specific subtypes and environmental risk factors, distinguish between what participants can do and what they typically do, and aggregate large data sets across sites.

Mahone and Denckla review the key literature pertaining to the neuropsychology of attention-deficit hyperactivity disorder (ADHD) over the past 35 years. These include the evolution of the diagnosis, influential theories, landmark treatment studies, and advances in brain mapping techniques, including anatomic, task activation and resting state fMRI, and diffusion tensor imaging. Challenges associated with studying and treating a heterogeneous neurodevelopmental disorder such as ADHD are described, along with an emphasis on associated disorders and conditions and special populations.

Fletcher and Grigorenko make the case that experimental trials of interventions focused on improving academic skills and addressing comorbid conditions are most effective for diagnosing and treating learning disabilities with a particular focus on reading disability. They conclude that neuropsychological assessment needs to move away from a focus on delineation of cognitive skills toward performance-based assessments of academic achievement and comorbid conditions, along with intervention responses that lead directly to evidence-based treatment plans. Finally, they emphasize that the path to further understanding learning disabilities will be strongly influenced by interdisciplinary research that includes the neuropsychologist and links data from cognitive neuroscience with assessment and treatment of these disorders.

Upon reflection of the articles contained within this special issue, we believe members of the INS will be proud of the many scientific accomplishments that have occurred over the past 50 years of our society’s existence. We are also assured that the future will see even greater scientific innovation in the field of neuropsychology. We think you will agree.

On a closing sad note, Larry Seidman, an Associate Editor of JINS and a co-author of the review on schizophrenia in this special issue, died unexpectedly in September 2017. We will miss this valued friend and colleague, who has made such important discoveries in the neuropsychology of mental health research.

Individual Titles, Authors, and Articles:

The Many Sides of Hemispheric Asymmetry: A Selective Review and Outlook
  • Michael C. Corballis | School of Psychology, University of Auckland, Auckland, New Zealand
  • Isabelle S. Häberling | Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, Zurich, Switzerland


Funded in part by Grant No. 3701584 to M.C.C. from the Marsden Fund, administered by the Royal Society of New Zealand.


Hemispheric asymmetry is commonly viewed as a dual system, unique to humans, with the two sides of the human brain in complementary roles. To the contrary, modern researchshows that cerebral and behavioral asymmetries are widespread in the animal kingdom, and that the concept of duality is an oversimplification. The brain has many networksserving different functions; these are differentially lateralized, and involve many genes. Unlike the asymmetries of the internal organs, brain asymmetry is variable,with a significant minority of the population showing reversed asymmetries or the absence of asymmetry. This variability may underlie the divisions of labor and thespecializations that sustain social life. (JINS, 2017, 23, 710–718)

  1. Afzelius, B.A. (1976). A human syndrome caused by immotile cilia. Science, 193, 317–319. CrossRef  Google Scholar  PubMed 
  2. Alcock, K.J., Passingham, R.E., Watkins, K.E., & Vargha-Khadem, F. (2000). Oral dyspraxia in inherited speech and language impairment. Brain & Language, 75, 17–33. CrossRef  Google Scholar  PubMed 
  3. American Heritage Dictionary of the English Language, 4th edition (2008). New York: Houghton Mifflin. Google Scholar 
  4. Andrew, R.J. (2002). Origins and evolution of lateralization. In L.J. Rogers & A.J. Andrew (Eds.), Comparative vertebrate lateralization (pp. 70–93). Cambridge: Cambridge University Press. CrossRef  Google Scholar 
  5. Annett, M. (2002). Handedness and brain asymmetry: The right shift theory. Hove, East Sussex, UK: Psychology Press. Google Scholar  PubMed 
  6. Arning, L., Ocklenburg, S., Schulz, S., Ness, V., Gerding, W.M., Hengstler, J.G., & Beste, C. (2013). PCSK6VNTR polymorphism is associated with degree of handedness but not direction of handedness. PLoS One, 8: e67251. http://dx.doi:10.1371/journal.pone.0067251 CrossRef  Google Scholar 
  7. Badzakova-Trajkov, G., Häberling, I.S., & Corballis, M.C. (2010). Cerebral asymmetries in monozygotic twins: An fMRI study. Neuropsychologia, 48, 3086–3093. http://doi:10.1016/j.neuropsychologia.2010.06.020 CrossRef  Google Scholar  PubMed 
  8. Badzakova-Trajkov, G., Häberling, I.S., & Corballis, M.C. (2011). Magical ideation, creativity, handedness, and cerebral asymmetries: A combined behavioural and fMRI study. Neuropsychologia, 40, 2896–2903. http://doi:10.1016/j.neuropsychologia.2011.06.016 CrossRef  Google Scholar 
  9. Badzakova-Trajkov, G., Häberling, I.S., Roberts, R.P., & Corballis, M.C. (2010). Cerebral asymmetries: Complementary and independent processes. PLoS One, 5(3), e9682. http://doi:10.1371/journal.pone.0009682 CrossRef  Google Scholar  PubMed 
  10. Barnett, K.J., & Corballis, M.C. (2002). Ambidexterity and magical ideation. Laterality, 7, 75–84. http://dx.doi:10.1080/13576500143000131 CrossRef  Google Scholar  PubMed 
  11. Bauer, R.H. (1993). Lateralization of neural control for vocalization by the frog (Rana pipiens). Psychobiology, 21, 243–248. Google Scholar 
  12. Bogen, J.E. (1969). The other side of the brain II: An appositional mind. Bulletin of the Los Angeles Neurological Society, 34, 135–162. Google Scholar  PubMed 
  13. Brandler, W.M., Morris, A.P., Evans, D.M., Scerri, T.S., Kemp, J.P., Timpson, N.J., & Paracchini, S. (2013). Common variants in left/right asymmetry genes and pathways are associated with relative hand skill. PLoS Genetics, 9, e1003751. http://dx.doi:10.1371/journal.pgen.1003751 CrossRef  Google Scholar  PubMed 
  14. Brandler, W.M., & Paracchini, S. (2014). The genetic relationship between handedness and neurodevelopmental disorders. Trends in Molecular Genetics, 20, 83–90. http://dx.doi.org/10.1016/j.molmed.2013.10.008 CrossRef  Google Scholar  PubMed 
  15. Broca, P. (1863). Localisations des fonctions cérébrales. Siège de la faculté du language articulé. Bulletin de la Société d’Anthropologie, 4, 200–208. Google Scholar 
  16. Buckner, R.L., Andrews-Hanna, J.R., & Schacter, D.L. (2008). The brain’s default network - Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38. http://dx.doi:10.1196/annals.1440.011 CrossRef  Google Scholar  PubMed 
  17. Cantalupo, C., & Hopkins, W.D. (2001). Asymmetric Broca’s area in great apes. Nature, 414, 505. CrossRef  Google Scholar  PubMed 
  18. Caspers, S., Zilles, K., Laird, A.R., & Eickhoff, S.B. (2010). A metaanalysis of action observation and imitation in the human brain. Neuroimage, 50, 1148e1167. http://dx.doi:10.1016/j.neuroimage.2009.12.112 CrossRef  Google Scholar 
  19. Corballis, M.C. (1980). Laterality and myth. American Psychologist, 35, 254–265. CrossRef  Google Scholar  PubMed 
  20. Corballis, M.C. (1991). The lop-sided ape. New York: Oxford University Press. Google Scholar 
  21. Corballis, M.C. (2002). From hand to mouth: The origins of language. Princeton, NJ: Princeton University Press. Google Scholar 
  22. Corballis, M.C., Badzakova-Trajkov, G., & Häberling, I.S. (2012). Right hand, left brain: Genetic and evolutionary bases of cerebral asymmetries for language and manual action. WIRES Cognitive Science, 3, 1–17. http://doi:10.1002/wcs.158 CrossRef  Google Scholar  PubMed 
  23. Crow, T.J. (1998). Why cerebral asymmetry is the key to the origin of Homo sapiens: How to find the gene or eliminate the theory. Current Psychology of Cognition, 17, 1237–1277. Google Scholar 
  24. Crow, T.J., Crow, L.R., Done, D.J., & Leask, S. (1998). Relative hand skill predicts academic ability: Global deficits at the point of hemispheric indecision. Neuropsychologia, 36, 1275–1282. CrossRef  Google Scholar  PubMed 
  25. Dasgupta, A., & Amack, J.D. (2016). Cilia in vertebrate left–right patterning. Philosophical Transactions of the Royal Society. Series B, Biological Sciences, 371, 20150410. http://dx.doi.org/10.1098/rstb.2015.0410 CrossRef  Google Scholar 
  26. DeLisi, L.E., Svetina, C., Razi, K., Shields, G., Wellman, N., & Crow, T.J. (2002). Hand preference and hand skill in families with schizophrenia. Laterality, 7, 321–332. http://dx.DOI:10.1080/13576500143000294 CrossRef  Google Scholar  PubMed 
  27. Douard, R., Feldman, A, Bargy, F., Loric, S., & Delmas, V. (2000). Anomalies of lateralization in man a case of total situs inversus. Surgerical and Radiologic Anatomy, 22, 293–297. CrossRef  Google Scholar 
  28. Ehert, G. (1987). Left hemisphere advantage in the mouse brain for recognizing ultrasonic communication calls. Nature, 325, 249–251. Google Scholar 
  29. Enard, W., Przeworski, M., Fisher, S.E., Lai, C.S.L., Wiebe, V., Kitano, T., & Pääbo, S. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418, 869–871. CrossRef  Google Scholar  PubMed 
  30. Francks, C., Maegawa, S., Lauren, J., Abrahams, B.S., Velayos-Baeza, A., Medland, S.E., & Monaco, A.P. (2007). LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Molecular Psychiatry, 12, 1129–1139. http://dx.doi:10.1038/sj.mp.4002053 CrossRef  Google Scholar 
  31. Gannon, P.J., Holloway, R.L., Broadfield, D.C., & Braun, A.R. (1998). Asymmetry of chimpanzee planum temporale: Humanlike pattern of Wernicke’s language area homolog. Science, 279, 220–222. CrossRef  Google Scholar  PubMed 
  32. Ghirlanda, S., & Vallortigara, G. (2004). The evolution of brain lateralization: A game-theoretical analysis of population structure. Proceedings of the Royal Society. Series B, Biological Sciences, 271, 853–857. http://dx.doi:10.1098/rspb.2003.2669 CrossRef  Google Scholar  PubMed 
  33. Giljov, A., Karenina, K., & Malashichev, Y. (2012). Does bipedality predict the group-level manual laterality in mammals? PLoS One, 7, e51583. http://dx.doi:10.1371/journal.pone.0051583 CrossRef  Google Scholar  PubMed 
  34. Giljov, A., Karenina, K., Ingram, J., & Malashichev, Y. (2015). Parallel emergence of true handedness in the evolution of marsupials and placentals. Current Biology, 25, 1878–1884. http://dx.doi.org/10.1016/j.cub.2015.05.043 CrossRef  Google Scholar  PubMed 
  35. Häberling, I.S., Corballis, P.M., & Corballis, M.C. (2016). Language, gesture, and handedness: Evidence for independent lateralized networks. Cortex, 82, 72–85. http://dx.doi.org/10.1016/j.cortex.2016.06.003 0010-9452 CrossRef  Google Scholar  PubMed 
  36. Häberling, I.S., Steinemann, A., & Corballis, M.C. (2016). Cerebral asymmetry for language: Comparing production with comprehension. Neuropsychologia, 80, 17–23. http://dx.doi.org/10.1016/j.neuropsychologia.2015.11.002 CrossRef  Google Scholar  PubMed 
  37. Heilman, K.M., & van den Abell, T. (1980). Right hemisphere dominance for attention: The mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology, 30, 327–330. CrossRef  Google Scholar 
  38. Hewes, G.W. (1973). Primate communication and the gestural origins of language. Current Anthropology, 14, 5–24. CrossRef  Google Scholar 
  39. Hopkins, W.D., Phillips, K.A., Bania, A., Calcutt, S.E., Gardner, M., Russell, J., & Schapiro, S.J. (2011). Hand preferences for coordinated bimanual actions in 777 great apes: Implications for the evolution of handedness in hominins. Journal of Human Evolution, 60, 650–611. http://dx.doi:10.1016/j.jhevol.2010.12.008 CrossRef  Google Scholar  PubMed 
  40. Jackson, J.H. (1864). Clinical remarks on cases of defects of expression (by words, writing, signs, etc) in diseases of the nervous system. Lancet, 2, 604. CrossRef  Google Scholar 
  41. Kauffman, P.R. (2016). Might hallucinations have social utility? A proposal for scientific study. Journal of Nervous & Mental Disease, 204, 702–712. http://dx.doi:0.1097/nmd.0000000000000542 CrossRef  Google Scholar  PubMed 
  42. Kebir, O., & Joober, R. (2011). Neuropsychological endophenotypes in attention-deficit/hyperactivity disorder: A review of genetic association studies. European Archives of Psychiatry & Clinical Neuroscience, 261, 583–594. CrossRef  Google Scholar  PubMed 
  43. Kennedy, D.N., O’Craven, K.M., Ticho, B.S., Goldstein, A.M., Makris, N., & Henson, J.W. (1999). Structural and functional brain asymmetries in human situs inversus totalis. Neurology, 53, 1260–1265. CrossRef  Google Scholar  PubMed 
  44. Liégeois, F., Baldeweg, T., Connelly, A., Gadian, D.G., Mishkin, M., & Vargha-Khadem, F. (2003). Language fMRI abnormalities associated with FOXP2 gene mutation. Nature Neuroscience, 6, 1230–1237. http://dx.doi:10.1098/rspb.2003.2669 CrossRef  Google Scholar  PubMed 
  45. Lindell, A.K. (2011). Lateral thinkers are not so laterally minded: Hemispheric asymmetry, interaction, and creativity. Laterality, 16, 479–498. http://dx.doi.org/10.1080/1357650X.2010.497813 CrossRef  Google Scholar 
  46. Lindell, A.K. (2013). Continuities in emotion lateralization in human and nonhuman primates. Frontiers in Human Neuroscience, 7, 464. http://dx.doi:0.3389/fnhum.2013.00464 CrossRef  Google Scholar 
  47. Liu, H., Stufflebeam, S.M., Sepulcre, J., Hedden, T., & Buckner, R. (2009). Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors. Proceedings of the National Academy of Sciences of the United States of America, 106, 20499–20503. http://dx.doi.10.1073.pnas.0908073106 CrossRef  Google Scholar  PubMed 
  48. Ludwig, K.U., Mattheisen, M., Muhleisen, T.W., Roeske, D., Schmal, C., Breuer, R., & Cichon, S. (2009). Supporting evidence for LRRMT1 imprinting in schizophrenia. Molecular Psychiatry, 14, 743–745. http://dx.doi:10.1038/mp.2009.28 CrossRef  Google Scholar 
  49. Luys, J.B. (1881). Recherches nouvelles sur les hémiplégies émotives.Encéphale, 1, 644–646. Google Scholar 
  50. MacNeilage, P.F., Studdert-Kennedy, M.G., & Lindblom, B. (1987). Primate handedness reconsidered. Behavioral & Brain Sciences, 10, 247–303. CrossRef  Google Scholar 
  51. Matsumoto, T., Kuriya, N., Akagi, T., Ohbu, K., Toyoda, O., Morita, J., & Kato, H. (1997). Handedness and laterality of the viscera. Neurology, 49, 1751. CrossRef  Google Scholar  PubMed 
  52. Mazoyer, B., Zago, L., Jobard, G., Crivello, F., Joliot, M., Perchey, G., & Tzourio-Mazoyer, N. (2014). Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness. PLos One, 9(6), e101165. CrossRef  Google Scholar 
  53. McGilchrist, I. (2009). The master and his emissary: The divided brain and the making of the western world. New Haven, CT: Yale University Press. Google Scholar 
  54. McManus, C. (2002). Right hand, left hand: The origins of asymmetry of brains, bodies, atoms and cultures. Cambridge, MA: Harvard University Press. Google Scholar 
  55. McManus, I.C., & Bryden, M.P. (1992). The genetics of handedness, cerebral dominance and lateralization. In I. Rapin & S.J. Segalowitz (Eds.), Handbook of neuropsychology, Vol. 6: Developmental neuropsychology, Part 1 (pp. 115–144). Amsterdam: Elsevier. Google Scholar 
  56. McManus, I.C., Davison, A., & Armour, J.A.L. (2009). Multilocus genetic models of handedness closely resemble single-locus models in explaining family data and are compatible with genome-wide association studies. Annals of the New York Academy of Sciences, 1288, 48–58. http://dx.doi:10.1111/nyas.12102 CrossRef  Google Scholar  PubMed 
  57. Medland, S., Duffy, D.L., Wright, M.J., Geffen, G.M., Hay, D.A, Levy, F., & Boomsma, D.I. (2009). Genetic influences on handedness: Data from 25,732 Australian and Dutch twin families. Neuropsychologia, 47, 330–337. http://dx.doi:10.1016/j.neuropsychologia.2008.09.005 CrossRef  Google Scholar  PubMed 
  58. Meguerditchian, A., Vauclair, J., & Hopkins, W.D. (2013). On the origins of human handedness and language: A comparative review of hand preferences for bimanual coordinated actions and gestural communication in nonhuman primates. Developmental Psychobiology, 55, 637–650. http://dx.doi:10.1002/dev.21150 CrossRef  Google Scholar  PubMed 
  59. Needham, R. (1973). Right and left: Essays on dual symbolic classification. Chicago, IL: University of Chicago Press. Google Scholar 
  60. Ocklenburg, S., Arning, L., Gerding, W.M., Epplen, J.T., Güntürkün, O., & Beste, C. (2013a). Cholecystokinin A receptor (CCKAR) gene variation is associated with language lateralization. PLoS One, 8, e53643. http://dx.doi.org/10.1371/journal.pone.0053643 CrossRef  Google Scholar  PubMed 
  61. Ocklenburg, S., Arning, L., Gerding, W.M., Epplen, J.T., Güntürkün, O., & Beste, C. (2013b). FOXP2 variation modulates functional hemispheric asymmetries for speech perception. Brain & Language, 126, 279–284. http://dx.doi.org/10.1016/j.bandl.2013.07.001 CrossRef  Google Scholar  PubMed 
  62. Ogden, J.A. (1985). Antero-posterior interhemispheric differences in the loci of lesions producing visual hemineglect. Brain & Cognition, 4, 59–75. CrossRef  Google Scholar 
  63. Ornstein, R.E. (1972). The psychology of consciousness. San Francisco: Freeman. Google Scholar 
  64. Orr, K.G., Cannon, M., Gilvarry, C.M., Jones, P.B., & Murray, R.M. (1999). Schizophrenic patients and their first-degree relatives show an excess of mixed-handedness. Schizophrenia Research, 39, 167–176. CrossRef  Google Scholar  PubMed 
  65. Orton, S.T. (1937). Reading, writing, and speech problems in children. New York: W.W. Norton & Co. Ltd. Google Scholar 
  66. Pinel, P., Fauchereau, F., Moreno, A., Barbot, A., Lathrop, M., Zelenika, D., & Dehaene, S. (2012). Genetic variants of FOXP2 and KIAA0319/TTRAP/THEM2 locus are associated with altered brain activation in distinct language-related regions. Journal of Neuroscience, 32, 817–825. http://dx.doi:10.1523/jneurosci.5996-10.2012 CrossRef  Google Scholar  PubMed 
  67. Porac, C., Rees, L., & Buller, T. (1990). Switching hands: A place for left hand use in a right hand world. In S. Coren (Ed.), Left-handedness: Behavioral implications and anomalies (pp. 259–290). Amsterdam: Elsevier Science. Google Scholar 
  68. Power, R.A., Steinberg, S., Bjornsdottir, G., Rietveld, C.A., Abdellaoui, A., Nivard, M.M., & Stefansson, K. (2015). Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nature Neuroscience, 18, 953–955. http://dx.doi:10.1038/nn.4040 CrossRef  Google Scholar  PubMed 
  69. Rhodes, G., & Zebrowitz, L.A. (Eds.), (2002). Facial attractiveness. London: Ablex. Google Scholar  PubMed 
  70. Rizzolatti, G., & Arbib, M.A. (1998). Language within our grasp. Trends in Neurosciences, 21, 188e194. CrossRef  Google Scholar  PubMed 
  71. Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11, 264e274. http://dx.doi:10.1038/nrn2805 CrossRef  Google Scholar  PubMed 
  72. Rodriguez, A., Kaakinen, M., Moilanen, I., Taanila, A., McGough, J.L., & Jarvelin, M-R. (2010). Mixed-handedness is linked to mental health problems in children and adolescents. Pediatrics, 125, e340–e348. http://dx.doi:10.1542/peds.2009-1165 CrossRef  Google Scholar  PubMed 
  73. Rodriguez, A., & Waldenstrom, U. (2008). Fetal origins of child non-right-handedness and mental health. Journal of Child Psychology & Psychiatry, 49, 967–976. http://dx.doi:10.1111/j.1469-7610.2008.01923.x CrossRef  Google Scholar  PubMed 
  74. Rogers, L.J., & Kaplan, G. (1996). Hand preferences and other lateral biases in rehabilitated orang-utans. Pongo pygmaeus. Animal Behaviour, 51, 13–25. CrossRef  Google Scholar 
  75. Rogers, L.J., Vallortigara, G., & Andrew, R.J. (2013). Divided brains: The biology and behavior of brain asymmetries. Cambridge, UK: Cambridge University Press. CrossRef  Google Scholar 
  76. Scerri, T.S., Brandler, W.M., Paracchini, S., Morris, A.P., Ring, S.M., Richardson, A.J., & Monaco, A.P. (2011). PCSK6 is associated with handedness in individuals with dyslexia. Human Molecular Genetics, 20, 608–614. http://dx.doi:10.1093/hmg/ddq475 CrossRef  Google Scholar  PubMed 
  77. Shobe, E.R., Ross, N.M., & Fleck, J.I. (2009). Influence of handedness and bilateral eye movements on creativity. Brain & Cognition, 71, 204–214. http://dx.doi.org/10.1080/1357650X.2015.1089879 CrossRef  Google Scholar  PubMed 
  78. Shore, R., Covill, L, Pettigrew, K.A., Brandler, W.M., Diaz, R., Xu, Y., & Paracchini, S. (2016). The handedness-associated PCSK6 locus spans an intronic promoter regulating novel transcripts. Human Molecular Genetics, 25, 1771–1779. http://dx.doi:10.1093/hmg/ddw047 CrossRef  Google Scholar  PubMed 
  79. Somers, M., Sommer, I.E., Boks, M.P., & Kahn, R.S. (2009). Hand-preference and population schizotypy. Schizophrenia Research, 108, 25–32. http://dx.doi:10.1016/j.schres.2008.11.010 CrossRef  Google Scholar  PubMed 
  80. Sperry, R.W. (1982). Some effects of disconnecting the cerebral hemisphere. Science, 217, 1223–1227. CrossRef  Google Scholar 
  81. Szathmáry, E. (2015). Toward major evolutionary transitions theory 2.0. Proceedings of the National Academy of Sciences of the United States of America, 102, 10104–10111. http://dx.doi/10.1073/pnas.1421398112 CrossRef  Google Scholar 
  82. Thornhill, R., & Gangestad, S.W. (1994). Human fluctuating asymmetry and sexual behavior. Human Nature, 4, 297–302. Google Scholar 
  83. Torgersen, J. (1950). Situs inversus, asymmetry, and twinning. American Journal of Human Genetics, 2, 361–370. Google Scholar  PubMed 
  84. Tsuang, H.-C., Chen, W.J., Kuo, S.-Y., & Hsiao, P.-C. (2013). The cross-cultural nature of the relationship between schizotypy and mixed handedness. Laterality, 18, 476–490. http://dx.doi:10.1080/1357650x.2012.720985 CrossRef  Google Scholar  PubMed 
  85. Wernicke, C. (1874). Der Aphasische Symptomencomplex. Eine psychologische Studie auf anatomische Basis. Breslau: Cohn and Wiegert. Google Scholar 
  86. Whitaker, H.A. (1982). Dichotomania: An essay on our left and right brains. Journal of Visual Verbal Languaging, 2, 7–13. CrossRef  Google Scholar 
Emotions Are Rising: The Growing Field of Affect Neuropsychology
  • Skye McDonald | School of Psychology, University of New South Wales, Sydney

E-mail address | s.mcdonald@unsw.edu.au

The Awareness of Social Inference Test (TASIT), mentioned in this manuscript, is sold commercially by Pearson Assessment, and the author receives royalties for this.


Thirty years ago, the neuropsychology of emotion started to emerge as a mainstream topic. Careful examination of individual patients showed that emotion, like memory,language, and so on, could be differentially affected by brain disorders, especially in the right hemisphere. Since then, there has been accelerating interest in uncoveringthe neural architecture of emotion, and the major steps in this process of discovery over the past 3 decades are detailed in this review. In the 1990s, magnetic resonanceimaging (MRI) scans provided precise delineation of lesions in the amygdala, medial prefrontal cortex, insula and somatosensory cortex as underpinning emotion disorders.At the same time, functional MRI revealed activation that was bilateral and also lateralized according to task demands. In the 2000s, converging evidence suggestedat least two routes to emotional responses: subcortical, automatic and autonomic responses and slower, cortical responses mediating cognitive processing. The discoveryof mirror neurons in the 1990s reinvigorated older views that simulation was the means to recognize emotions and empathize with others. More recently, psychophysiologicalresearch, revisiting older Russian paradigms, has contributed new insights into how autonomic and other physiological indices contribute to decision making (the somaticmarker theory), emotional simulation, and social cognition. Finally, this review considers the extent to which these seismic changes in understanding emotional processesin clinical disorders have been reflected in neuropsychological practice. (JINS, 2017, 23, 719–731)

  1. Adolphs, R. (2002a). Recognizing emotion from facial expressions: Psychological and neurological mechanisms. Behavioral & Cognitive Neuroscience Reviews, 1(1), 21–62. CrossRef  Google Scholar  PubMed 
  2. Adolphs, R. (2002b). Neural systems for recognizing emotion. Current Opinion in Neurobiology, 12, 169–177. CrossRef  Google Scholar  PubMed 
  3. Adolphs, R., Damasio, H., & Tranel, D. (2002). Neural systems for recognition of emotional prosody: A 3-D lesion study. Emotion, 2(1), 23–51. CrossRef  Google Scholar  PubMed 
  4. Adolphs, R., Damasio, H., Tranel, D., & Damasio, A.R. (1996). Cortical systems for the recognition of emotion in facial expressions. Journal of Neuroscience, 16(23), 7678–7687. Google Scholar  PubMed 
  5. Adolphs, R., Jansari, A., & Tranel, D. (2001). Hemispheric perception of emotional valence from facial expressions. Neuropsychology, 15(4), 516–524. CrossRef  Google Scholar  PubMed 
  6. Adolphs, R., & Tranel, D. (2004). Impaired judgments of sadness but not happiness following bilateral amygdala damage. Journal of Cognitive Neuroscience, 16(3), 453–462. CrossRef  Google Scholar 
  7. Adolphs, R., Tranel, D., & Damasio, A.R. (1998). The human amygdala in social judgment. Nature, 393(6684), 470–474. CrossRef  Google Scholar  PubMed 
  8. Adolphs, R., Tranel, D., & Damasio, A.R. (2003). Dissociable neural systems for recognizing emotions. Brain & Cognition, 52(1), 61–69. CrossRef  Google Scholar  PubMed 
  9. Adolphs, R., Tranel, D., Damasio, A.R., & Damasio, H. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Journal of Neuroscience, 15, 5879–5891. Google Scholar 
  10. Adolphs, R., Tranel, D., & Damasio, H. (2001). Emotion recognition from faces and prosody following temporal lobectomy. Neuropsychology, 15(3), 396–404. CrossRef  Google Scholar  PubMed 
  11. Amodio, D.M., & Frith, C.D. (2006). Meeting of minds: the medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7(4), 268–277. CrossRef  Google Scholar 
  12. Angrilli, A., Mauri, A., Palomba, D., Flor, H., Birbaumer, N., Sartori, G., & di Paola, F. (1996). Startle reflex and emotion modulation impairment after a right amygdala lesion. Brain, 119(Pt 6), 1991–2000. CrossRef  Google Scholar  PubMed 
  13. Angrilli, A., Palomba, D., Cantagallo, A., Maietti, A., & Stegagno, L. (1999). Emotional impairment after right orbitofrontal lesion in a patient without cognitive deficits. NeuroReport, 10(8), 1741–1746. CrossRef  Google Scholar 
  14. Baas, D., Aleman, A., & Kahn, R.S. (2004). Lateralization of amygdala activation: a systematic review of functional neuroimaging studies. Brain Research Reviews, 45(2), 96–103. CrossRef  Google Scholar  PubMed 
  15. Babbage, D.R., Yim, J., Zupan, B., Neumann, D., Tomita, M.R., & Willer, B. (2011). Meta-analysis of facial affect recognition difficulties after traumatic brain injury. Neuropsychology, 25(3), 277–285. CrossRef  Google Scholar  PubMed 
  16. Balconi, M., & Bortolotti, A. (2013). The “simulation” of the facial expression of emotions in case of short and long stimulus duration. The effect of pre-motor cortex inhibition by rTMS. Brain and Cognition, 83, 114–120. CrossRef  Google Scholar 
  17. Baron-Cohen, S., Leslie, A.M., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21, 37–46. CrossRef  Google Scholar  PubMed 
  18. Barrash, J., Tranel, D., & Anderson, S.W. (2000). Acquired personality disturbances associated with bilateral damage to the ventromedial prefrontal region. Developmental Neuropsychology, 18(3), 355–381. CrossRef  Google Scholar  PubMed 
  19. Bavelas, J.B., Black, A., Chovil, N., Lemery, C.R., & Mullett, J. (1988). Form and function in motor mimicry topographic evidence that the primary function is communicative. Human Communication Research, 14(3), 275–299. CrossRef  Google Scholar 
  20. Bechara, A. (2004). The role of emotion in decision-making: Evidence from neurological patients with orbitofrontal damage. Brain and Cognition, 55(1), 30–40. CrossRef  Google Scholar  PubMed 
  21. Bechara, A., Damasio, H., Damasio, A.R., & Lee, G.P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, 19(13), 5473–5481. Google Scholar  PubMed 
  22. Bechara, A., Damasio, H., Tranel, D., & Damasio, A.R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275(5304), 1293–1294. CrossRef  Google Scholar  PubMed 
  23. Bechara, A., Tranel, D., & Damasio, H. (2000). Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain, 123(11), 2189–2202. CrossRef  Google Scholar  PubMed 
  24. Bechara, A., Tranel, D., Damasio, H., Adolphs, R., Rockland, C., & Damasio, A.R. (1995). Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science, 269, 1115–1118. CrossRef  Google Scholar  PubMed 
  25. Bechara, A., Tranel, D., Damasio, H., & Damasio, A.R. (1996). Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cerebral Cortex, 6(2), 215–225. CrossRef  Google Scholar  PubMed 
  26. Belliveau, J.W., Kennedy, D.N. Jr., McKinstry, R.C., Buchbinder, B.R., Weisskoff, R.M., Cohen, M.S., & Rosen, B.R. (1991). Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 254(5032), 716–719. CrossRef  Google Scholar  PubMed 
  27. Benton, A.L. (1968). Differential behavioural effects in frontal lobe disease. Neuropsychologia, 6, 53–60. CrossRef  Google Scholar 
  28. Blair, R.J., & Cipolotti, L. (2000). Impaired social response reversal: A case of “acquired sociopathy”. Brain, 123, 1122–1141. CrossRef  Google Scholar 
  29. Blairy, S., Herrera, P., & Hess, U. (1999). Mimicry and the judgment of emotional facial expressions. Journal of Nonverbal Behavior, 23(1), 5–41. CrossRef  Google Scholar 
  30. Boggio, P.S., Rigonatti, S.P., Ribeiro, R.B., Myczkowski, M.L., Nitsche, M.A., Pascual-Leone, A., & Fregni, F. (2008). A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression. International Journal of Neuropsychopharmacology, 11(2), 249–254. CrossRef  Google Scholar  PubMed 
  31. Bölte, S., Feineis-Matthews, S., & Poustka, F. (2008). Brief report: Emotional processing in high-functioning autism--Physiological reactivity and affective report. Journal of Autism & Developmental Disorders, 38, 776–781. CrossRef  Google Scholar 
  32. Bornhofen, C., & McDonald, S. (2008a). Comparing strategies for treating emotion perception deficits in traumatic brain injury. Journal of Head Trauma Rehabilitation, 23, 103–115. CrossRef  Google Scholar  PubMed 
  33. Bornhofen, C., & McDonald, S. (2008b). Treating deficits in emotion perception following traumatic brain injury. Neuropsychological Rehabilitation, 18(1), 22–44. CrossRef  Google Scholar  PubMed 
  34. Borod, J.C., & Caron, H.S. (1980). Facedness and emotion related to lateral dominance, sex and expression type. Neuropsychologia, 18(2), 237–242. doi: https://doi.org/10.1016/0028-3932(80)90070-6 CrossRef  Google Scholar  PubMed 
  35. Borod, J.C., Koff, E., Lorch, M.P., & Nicholas, M. (1985). Channels of emotional expression in patients with unilateral brain damage. Archives of Neurology, 42(4), 345–348. CrossRef  Google Scholar  PubMed 
  36. Borod, J.C., Koff, E., Lorch, M.P., & Nicholas, M. (1986). The expression and perception of facial emotion in brain-damaged patients. Neuropsychologia, 24(2), 169–180. CrossRef  Google Scholar  PubMed 
  37. Borod, J.C., Tabert, M.H., Santschi, C., & Strauss, E. (2000). Neuropsychological assessment of emotional processing in brain-damaged patients. In J. Borod (Ed.), The neuropsychology of emotion (pp 80–105). New York: Oxford University Press. Google Scholar 
  38. Borod, J.C., Welkowitz, J., Alpert, M., Brozgold, A., Martin, C., Peselow, E., & Diller, L. (1990). Parameters of emotional processing in neuropsychiatric disorders: Conceptual issues and a battery of tests. Journal of Communication Disorders, 23, 247–271. CrossRef  Google Scholar 
  39. Bowers, D., Blonder, L.X., & Heilman, K.M. (1991). Florida affect battery. Gainsville, FL: Centre for Neuropsychological Studies, University of Florida. Google Scholar 
  40. Bowers, L., Huisingh, R., & LoGiudice, C. (2010). Social Language Development Test - Adolescent Manual. East Moline, IL: LinguiSystems, Inc. Google Scholar 
  41. Brooks, D.N., Campsie, L., Symington, C., Beattie, A., & McKinlay, W. (1986). The five year outcome of severe blunt head injury: A relative’s view. Journal of Neurology, Neurosurgery, & Psychiatry, 49(7), 764–770. CrossRef  Google Scholar  PubMed 
  42. Brownell, H.H., Michel, D., Powelson, J., & Gardner, H. (1983). Surprise but not coherence: Sensitivity to verbal humor in right-hemisphere patients. Brain and Language, 18, 20–27. CrossRef  Google Scholar 
  43. Bryden, M.P., Ley, R.G., & Sugarman, J.H. (1982). A left-ear advantage for identifying the emotional quality of tonal sequences. Neuropsychologia, 20(1), 83–87. doi: https://doi.org/10.1016/0028-3932(82)90089-6 CrossRef  Google Scholar  PubMed 
  44. Buchanan, T.W., Tranel, D., & Adolphs, R. (2004). Anteromedial temporal lobe damage blocks startle modulation by fear and disgust. Behavioral Neuroscience, 118(2), 429–437. CrossRef  Google Scholar  PubMed 
  45. Calder, A.J., Keane, J., Manes, F., Antoun, N., & Young, A.W. (2000). Impaired recognition and experience of disgust following brain injury. Nature Neuroscience, 3(11), 1077–1078. CrossRef  Google Scholar  PubMed 
  46. Carr, L., Iacoboni, M., Dubeau, M.-C., Maxzziotta, J.C., & Lenzi, G.L. (2003). Neural mechanisms of empathy in humans: A relay from neural systems for imitation to limbic areas. Proceedings of the National Academy of Science of the United States of America, 100, 5487–5502. CrossRef  Google Scholar  PubMed 
  47. Cassel, A., McDonald, S., Kelly, M., & Togher, L. (2016). Learning from the minds of others: A review of social cognition treatments and their relevance to traumatic brain injury. Neuropsychological Rehabilitation, 1–34. doi: 10.1080/09602011.2016.1257435 CrossRef  Google Scholar  PubMed 
  48. Cattran, C.J., Oddy, M., Wood, R.L., & Moir, J.F. (2011). Post-injury personality in the prediction of outcome following severe acquired brain injury. Brain Injury, 25(11), 1035–1046. CrossRef  Google Scholar  PubMed 
  49. Cicone, M., Wapner, W., & Gardner, H. (1980). Sensitivity to emotional expressions and situations in organic patients. Cortex, 16, 145–158. CrossRef  Google Scholar  PubMed 
  50. Combs, D.R., Adams, S.D., Penn, D.L., Roberts, D., Tiegreen, J., & Stem, P. (2007). Social Cognition and Interaction Training (SCIT) for inpatients with schizophrenia spectrum disorders: Preliminary findings. Schizophrenia Research, 91(1-3), 112–116. CrossRef  Google Scholar  PubMed 
  51. Costafreda, S.G., Brammer, M.J., David, A.S., & Fu, C.H. (2008). Predictors of amygdala activation during the processing of emotional stimuli: A meta-analysis of 385 PET and fMRI studies. Brain Research Reviews, 58(1), 57–70. CrossRef  Google Scholar 
  52. Croker, V., & McDonald, S. (2005). Recognition of emotion from facial expression following traumatic brain injury. Brain Injury, 19, 787–789. CrossRef  Google Scholar  PubMed 
  53. Cusi, A.M., Nazarov, A., Holshausen, K., MacQueen, G.M., & McKinnon, M.C. (2012). Systematic review of the neural basis of social cognition in patients with mood disorders. Journal of Psychiatry & Neuroscience, 37(3), 154–169. CrossRef  Google Scholar  PubMed 
  54. Damasio, A.R., Tranel, D., & Damasio, H. (1990). Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli. Behavioural Brain Research, 41(2), 81–94. CrossRef  Google Scholar  PubMed 
  55. Damasio, A.R., Tranel, D., & Damasio, H.C. (1991). Somatic markers and the guidance of behavior: Theory and preliminary testing. In H.S. Levin, H.M. Eisenberg & A.L. Benton (Eds.), Frontal lobe function and dysfunction (pp 217–229). NY, US: Oxford University Press. Google Scholar 
  56. Darwin, C. (1872). The expression of the emotions in man and animals. London, England: John Murray. CrossRef  Google Scholar 
  57. Davidson, R.J. (1984). Affect, cognition and hemispheric specialization. In C. E. Izard, J. Kagan & R. Zajonc (Eds.), Emotion, cognition and behavior (pp 320–365). New York: Cambridge University Press. Google Scholar 
  58. Davidson, R.J., Pizzagalli, D., Nitschke, J.B., & Kalin, N.H. (2003). Parsing the subcomponents of emotion and disorders of emotion: Perspectives from affective neuroscience. In R.J. Davidson, K.R. Scherer & H.H. Goldsmith (Eds.), Handbook of affective sciences. Oxford: Oxford University Press. Google Scholar 
  59. Davis, J.I., Senghas, A., Brandt, F., & Ochsner, K.N. (2010). The effects of BOTOX injections on emotional experience. Emotion, 10(3), 433–440. CrossRef  Google Scholar  PubMed 
  60. de Sousa, A., McDonald, S., Rushby, J., Li, S., Dimoska, A., & James, C. (2011). Understanding deficits in empathy after traumatic brain injury: The role of affective responsivity. Cortex, 47(5), 526–535. CrossRef  Google Scholar  PubMed 
  61. De Winter, F.-L., Zhu, Q., Van den Stock, J., Nelissen, K., Peeters, R., de Gelder, B., & Vandenbulcke, M. (2015). Lateralization for dynamic facial expressions in human superior temporal sulcus. Neuroimage, 106, 340–352. Google Scholar 
  62. Demark, J., & Gemeinhardt, M. (2002). Anger and it’s management for survivors of acquired brain injury. Brain Injury, 16(2), 91–108. CrossRef  Google Scholar  PubMed 
  63. Dethier, M., Blairy, S., Rosenberg, H., & McDonald, S. (2012). Spontaneous and posed emotional facial expressions following severe traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 34(9), 936–947. CrossRef  Google Scholar  PubMed 
  64. Dethier, M., Blairy, S., Rosenberg, H., & McDonald, S. (2013). Deficits in processing feedback from emotional behaviours following severe TBI. Journal of the International Neuropsychological Society, 19(4), 367–379. CrossRef  Google Scholar 
  65. di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: a neurophysiological study. Experimental Brain Research, 91(1), 176–180. CrossRef  Google Scholar  PubMed 
  66. Dimberg, U., & Thunberg, M. (1998). Rapid facial reactions to emotional facial expressions. Scandinavian Journal of Psychology, 39, 39–45. CrossRef  Google Scholar  PubMed 
  67. Dimberg, U., Thunberg, M., & Elmehed, K. (2000). Unconscious facial reactions to emotional facial reactions. Psychological Science, 11, 86–89. CrossRef  Google Scholar  PubMed 
  68. Ekman, P., & Friesen, W.V. (1971). Constants across culture in the face and emotion. Journal of Personality and Social Psychology, 17, 124–129. CrossRef  Google Scholar  PubMed 
  69. Emery, N.A., & Amaral, D.G. (2000). The role of the amygdala in primate social cognition. In R. D. Lane & L. Nadel (Eds.), Cognitive neuroscience of emotion. Oxford: Oxford University Press. Google Scholar 
  70. Esteves, F., Dimberg, U., & Ohman, A. (1994). Automatically elirefd fear: Conditioned skin conductance responses to masked facial expressions. Cognition & Emotion, 8(5), 393–413. CrossRef  Google Scholar 
  71. Feinstein, J.S., Khalsa, S.S., Salomons, T.V., Prkachin, K.M., Frey-Law, L.A., Lee, J.E., & Rudrauf, D. (2016). Preserved emotional awareness of pain in a patient with extensive bilateral damage to the insula, anterior cingulate, and amygdala. Brain Structure & Function, 221, 1499–1511. CrossRef  Google Scholar 
  72. Fellows, L.K., & Farah, M.J. (2005). Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cerebral Cortex, 15(1), 58–63. CrossRef  Google Scholar  PubMed 
  73. Fernie, G., & Tunney, R.J. (2013). Learning on the IGT follows emergence of knowledge but not differential somatic activity. Frontiers in Psychology, 4, 687. CrossRef  Google Scholar 
  74. Fett, A.K.J., Viechtbauer, W., Dominguez, M.D.G., Penn, D.L., van Os, J., & Krabbendam, L. (2011). The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: A meta-analysis. Neuroscience and Biobehavioral Reviews, 35(3), 573–588. CrossRef  Google Scholar  PubMed 
  75. Fisher, A.C., Rushby, J.A., McDonald, S., Parks, N., & Piguet, O. (2015). Neurophysiological correlates of dysregulated emotional arousal in severe traumatic brain injury. Clinical Neurophysiology, 126(2), 314–324. CrossRef  Google Scholar  PubMed 
  76. Fox, N.A., Bakermans-Kranenburg, M.J., Yoo, K.H., Bowman, L.C., Cannon, E.N., Vanderwert, R.E., & van Ijzendoorn, M.H. (2016). Assessing human mirror activity with EEG mu right hemisphereythm: A meta-analysis. Psychological Bulletin, 142(3), 291–313. CrossRef  Google Scholar 
  77. Francis, H.M., Fisher, A., Rushby, J.A., & McDonald, S. (2016). Reduced heart rate variability in chronic severe traumatic brain injury: Association with impaired emotional and social functioning, and potential for treatment using biofeedback. Neuropsychological Rehabilitation, 26(1), 103–125. CrossRef  Google Scholar  PubMed 
  78. Funayama, E.S., Grillon, C., Davis, M., & Phelps, E.A. (2001). A double dissociation in the affective modulation of startle in humans: effects of unilateral temporal lobectomy. Journal of Cognitive Neuroscience, 13(6), 721–729. CrossRef  Google Scholar  PubMed 
  79. Gainotti, G. (1972). Emotional behavior and hemispheric side of the lesion. Cortex, 8, 41–55. CrossRef  Google Scholar 
  80. Gazzola, V., Aziz-Zadeh, L., & Keysers, C. (2006). Empathy and the somatotopic auditory mirror system in humans. Current Biology, 16(18), 1824–1829. CrossRef  Google Scholar  PubMed 
  81. Golden, W.L., & Consorte, J. (1982). Training mildly retarded individuals to control their anger through the use of cognitive-behavior therapy techniques. Journal of Contemporary Psychotherapy, 13(2), 182–187. CrossRef  Google Scholar 
  82. Grafman, J., Schwab, K., Warden, D., Pridgen, A., Brown, H.R., & Salazar, A.M. (1996). Frontal lobe injuries, violence, and aggression: A report of the Vietnam Head Injury Study. Neurology, 46(5), 1231–1238. CrossRef  Google Scholar  PubMed 
  83. Green, M.J., Cahill, C.M., & Malhi, G.S. (2007). The cognitive and neurophysiological basis of emotion dysregulation in bipolar disorder. Journal of Affective Disorders, 103(1-3), 29–42. CrossRef  Google Scholar  PubMed 
  84. Grèzes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis. Human Brain Mapping, 12(1), 1–19.3.0.CO;2-V>CrossRef Google Scholar  PubMed 
  85. Guillaume, S., Jollant, F., Jaussent, I., Lawrence, N., Malafosse, A., & Courtet, P. (2009). Somatic markers and explicit knowledge are both involved in decision-making. Neuropsychologia, 47(10), 2120–2124. CrossRef  Google Scholar  PubMed 
  86. Gutbrod, K., Krouzel, C., Hofer, H., Muri, R., Perrig, W., & Ptak, R. (2006). Decision-making in amnesia: Do advantageous decisions require conscious knowledge of previous behavioural choices? Neuropsychologia, 44(8), 1315–1324. CrossRef  Google Scholar  PubMed 
  87. Hariri, A.R., Bookheimer, S.Y., & Mazziotta, J.C. (2000). Modulating emotional responses: Effects of a neocortical network on the limbic system. Neuroreport, 11(1), 43–48. CrossRef  Google Scholar  PubMed 
  88. Hazelton, J.L., Irish, M., Hodges, J.R., Piguet, O., & Kumfor, F. (2016). Cognitive and affective empathy disruption in non-fluent primary progressive aphasia syndromes. Brain Impairment, 1–13. doi: 10.1017/BrImp.2016.21 Google Scholar 
  89. Heilman, K.M., Bowers, D., & Valenstein, E. (1985). Emotional disorders associated with neurological diseases. In K. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (pp 377–402). New York: Oxford University Press. Google Scholar 
  90. Heilman, K.M., Scholes, R., & Watson, R. (1975). Auditory affective agnosia: Disturbed comprehension of affective speech. Journal of Neurology, Neurosurgery, & Psychiatry, 38, 69–72. CrossRef  Google Scholar  PubMed 
  91. Heims, H., Critchley, H., Dolan, R., Mathias, C., & Cipolotti, L. (2004). Social and motivational functioning is not critically dependent on feedback of autonomic responses: Neuropsychological evidence from patients with pure autonomic failure. Neuropsychologia, 42(14), 1979–1988. CrossRef  Google Scholar 
  92. Heller, W., & Levy, J. (1981). Perception and expression of emotion in right-handers and left-handers. Neuropsychologia, 19(2), 263–272. doi: https://doi.org/10.1016/0028-3932(81)90110-X CrossRef  Google Scholar  PubMed 
  93. Hess, U., & Blairy, S. (2001). Facial mimicry and emotional contagion to dynamic emotional facial expressions and their influence on decoding accuracy. International Journal of Psychophysiology, 40(2), 129–141. CrossRef  Google Scholar  PubMed 
  94. Hinson, J.M., Jameson, T.L., & Whitney, P. (2002). Somatic markers, working memory, and decision making. Cognitive, Affective, & Behavioral Neuroscience, 2, 341–353. CrossRef  Google Scholar  PubMed 
  95. Hoffman, M.L. (1984). Interaction of affect and cognition on empathy. In P. Phillippot, R. Feldman & E. Coats (Eds.), The social context of nonverbal behaviour (pp 103–131). Cambridge: Cambridge University Press. Google Scholar 
  96. Honan, C.A., McDonald, S., Sufani, C., Hine, D.W., & Kumfor, F. (2016). The awareness of social inference test: Development of a shortened version for use in adults with acquired brain injury. Clinical Neuropsychologist, 30(2), 243–264. CrossRef  Google Scholar  PubMed 
  97. Honan, C.A., McDonald, S., Tate, R.L., Ownsworth, T., Fleming, J., Anderson, V., & Ponsford, J. (in press). Outcome instruments in moderate-to-severe traumatic brain injury: Recommendations for use in psychosocial research. Neuropsychological RehabilitationGoogle Scholar 
  98. Hopkins, M.J., Dywan, J., & Segalowitz, S.J. (2002). Altered electrodermal response to facial expression after closed head injury. Brain Injury, 16, 245–257. CrossRef  Google Scholar  PubMed 
  99. Horan, W.P., Kern, R.S., Green, M.F., & Penn, D.L. (2008). Social cognition training for individuals with schizophrenia: Emerging evidence. American Journal of Psychiatric Rehabilitation, 11(3), 205–252. CrossRef  Google Scholar 
  100. Hornak, J., Rolls, E.T., & Wade, D. (1996). Face and voice expression identification in patients with emotional and behavioural changes following ventral frontal lobe damage. Neuropsychologia, 34(4), 247–261. CrossRef  Google Scholar  PubMed 
  101. Iacoboni, M. (2009). Imitation, empathy, and mirror neurons. Annual Review of Psychology, 60(1), 653–670. CrossRef  Google Scholar  PubMed 
  102. Irani, F., Seligman, S., Kamath, V., Kohler, C., & Gur, R.C. (2012). A meta-analysis of emotion perception and functional outcomes in schizophrenia. Schizophrenia Research, 137(1-3), 203–211. CrossRef  Google Scholar 
  103. Izard, C.E. (1971). The face of emotion (Vol. xii). CT: Appleton-Century-Crofts. Google Scholar 
  104. Jackson, P.L., Rainville, P., & Decety, J. (2006). To what extent do we share the pain of others? Insight from the neural bases of pain empathy. Pain, 125(1-2), 5–9. CrossRef  Google Scholar  PubMed 
  105. Jacobson, L., Javitt, D.C., & Lavidor, M. (2011). Activation of inhibition: diminishing impulsive behavior by direct current stimulation over the inferior frontal gyrus. Journal of Cognitive Neuroscience, 23(11), 3380–3387. CrossRef  Google Scholar  PubMed 
  106. Kamminga, J., Kumfor, F., Burrell, J.R., Piguet, O., Hodges, J.R., & Irish, M. (2015). Differentiating between right-lateralised semantic dementia and behavioural-variant frontotemporal dementia: An examination of clinical characteristics and emotion processing. Journal of Neurology, Neurosurgery, & Psychiatry, 86(10), 1082–1088. CrossRef  Google Scholar  PubMed 
  107. Kant, R., Duffy, J.D., & Pivovarnik, A. (1998). Prevalence of apathy following head injury. Brain Injury, 12(1), 87–92. CrossRef  Google Scholar  PubMed 
  108. Keightly, M.L., Winocur, G., Graham, S.J., Matyberg, H.S., Hevenor, S.J., & Grady, C.L. (2003). An fMRI study investigating cognitive modulation of brain regions associated with emotional processing of visual stimuli. Neuropsychologia, 41, 585–596. CrossRef  Google Scholar 
  109. Kelly, M., McDonald, S., & Frith, M.H.J. (2017). Assessment and rehabilitation of social cognition impairment after brain injury: Surveying practices of clinicians. Brain Impairment, 18(1), 11–35. CrossRef  Google Scholar 
  110. Kelly, M.P., McDonald, S.P., & Frith, M.H.J. (in press). A survey of clinicians working in brain injury rehabilitation: Are social cognition impairments on the radar? Journal of Head Trauma RehabilitationGoogle Scholar 
  111. Kern, R.S., Nuechterlein, K.H., Green, M.F., Baade, L.E., Fenton, W.S., Gold, J.M., & Marder, S.R. (2008). The MATRICS Consensus Cognitive Battery, Part 2: Co-norming and standardization. American Journal of Psychiatry, 165(2), 214–220. CrossRef  Google Scholar  PubMed 
  112. Kinsella, G., Packer, S., & Olver, J. (1991). Maternal reporting of behaviour following very severe blunt head injury. Journal of Neurology, Neurosurgery, & Psychiatry, 54(5), 422–426. CrossRef  Google Scholar  PubMed 
  113. Kohler, C.G., Walker, J.B., Martin, E.A., Healey, K.M., & Moberg, P.J. (2010). Facial emotion perception in schizophrenia: A meta-analytic review. Schizophrenia Bulletin, 36(5), 1009–1019. CrossRef  Google Scholar  PubMed 
  114. Korkman, M., Kirk, U., & Kemp, S. (2007). NEPSY- second edition. New York: Pearson Assessment. Google Scholar 
  115. Kumfor, F., Landin-Romero, R., Devenney, E., Hutchings, R., Grasso, R., Hodges, J.R., & Piguet, O. (2016). On the right side? A longitudinal study of left-versus right-lateralized semantic dementia. Brain, 139(3), 986–998. doi: 10.1093/brain/awv387 CrossRef  Google Scholar  PubMed 
  116. Kuehn, E., Mueller, K., Turner, R., & Schutz-Bosbach, S. (2014). The functional architecture of S1 during touch observation described with 7 T fMRI. Brain Structure & Function, 219(1), 119–140. CrossRef  Google Scholar  PubMed 
  117. Kurtz, M.M., & Richardson, C.L. (2012). Social cognitive training for schizophrenia: A meta-analytic investigation of controlled research. Schizophrenia Bulletin, 38(5), 1092–1104. CrossRef  Google Scholar  PubMed 
  118. Landin-Romero, R., Tan, R., Hodges, J.R., & Kumfor, F. (2016). An update on semantic dementia: Genetics, imaging, and pathology. Alzheimer’s Research & Therapy, 8(1), 52. CrossRef  Google Scholar  PubMed 
  119. Langner, R., & Eickhoff, S.B. (2013). Sustaining attention to simple tasks: A meta-analytic review of the neural mechanisms of vigilant attention. Psychological Bulletin, 139(4), 870–900. CrossRef  Google Scholar  PubMed 
  120. LeDoux, J. (1995). Emotions: Clues from the brain. Annual Reviews: Psychology, 46, 209–235. Google Scholar 
  121. Levine, B., Black, S.E., Cheung, G., Campbell, A., O’Toole, C., & Schwartz, M.L. (2005). Gambling task performance in traumatic brain injury: relationships to injury severity, atrophy, lesion location, and cognitive and psychosocial outcome. Cognitive and Behavioral Neurology, 18(1), 45–54. CrossRef  Google Scholar  PubMed 
  122. Ley, R.G., & Bryden, M.P. (1979). Hemispheric differences in processing emotions and faces. Brain and Language, 7(1), 127–138. CrossRef  Google Scholar  PubMed 
  123. Lieberman, M.D. (2007). Social cognitive neuroscience: A review of core processes. Annual Review of Psychology, 58, 259–289. CrossRef  Google Scholar  PubMed 
  124. Lindquist, K.A., Wager, T.D., Kober, H., Bliss-Moreau, E., & Barrett, L.F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35(3), 121–143. CrossRef  Google Scholar  PubMed 
  125. Loo, C.K., Alonzo, A., Martin, D., Mitchell, P.B., Galvez, V., & Sachdev, P. (2012). Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial. British Journal of Psychiatry, 200(1), 52–59. CrossRef  Google Scholar  PubMed 
  126. Luria, A.R. (1973). The working brain. London: Allen Lane: The Penguin Press. Google Scholar 
  127. McDonald, S. (2012). New frontiers in neuropsychological assessment: Assessing social perception using a standardised instrument, the Awareness of Social Inference Test. Australian Psychologist, 47(1), 39–48. CrossRef  Google Scholar 
  128. McDonald, S., Fisher, A., Togher, L., Tate, R., Rushby, J., English, T., & Francis, H. (2015). Adolescent performance on The Awareness of Social Inference Test: TASIT. Brain Impairment, 16(1), 3–18. CrossRef  Google Scholar 
  129. McDonald, S., Flanagan, S., Martin, I., & Saunders, C. (2004). The ecological validity of TASIT: A test of social perception. Neuropsychological Rehabilitation, 14, 285–302. CrossRef  Google Scholar 
  130. McDonald, S., Flanagan, S., & Rollins, J. (2011). The Awareness of Social Inference Test (Revised). Sydney, Australia: Pearson Assessment. Google Scholar 
  131. McDonald, S., Flanagan, S., Rollins, J., & Kinch, J. (2003). TASIT: A new clinical tool for assessing social perception after traumatic brain injury. Journal of Head Trauma Rehabilitation, 18, 219–238. CrossRef  Google Scholar  PubMed 
  132. McDonald, S., Li, S., De Sousa, A., Rushby, J., Dimoska, A., James, C., & Tate, R.L. (2011). Impaired mimicry response to angry faces following severe traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 33(1), 17–29. CrossRef  Google Scholar  PubMed 
  133. McDonald, S., Rushby, J., Li, S., de Sousa, A., Dimoska, A., James, C., & Togher, L. (2011). The influence of attention and arousal on emotion perception in adults with severe traumatic brain injury. International Journal of Psychophysiology, 82(1), 124–131. CrossRef  Google Scholar  PubMed 
  134. Mitchell, R.L.C., & Phillips, L.H. (2015). The overlapping relationship between emotion perception and theory of mind. Neuropsychologia, 70, 1–10. CrossRef  Google Scholar  PubMed 
  135. Molenberghs, P., Cunnington, R., & Mattingley, J.B. (2012). Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neuroscience and Biobehavioral Reviews, 36(1), 341–349. CrossRef  Google Scholar  PubMed 
  136. Molenberghs, P., Johnson, H., Henry, J.D., & Mattingley, J.B. (2016). Understanding the minds of others: A neuroimaging meta-analysis. Neuroscience and Biobehavioral Reviews, 65, 276–291. CrossRef  Google Scholar  PubMed 
  137. Morris, J.S., DeGelder, B., Weiskrantz, L., & Dolan, R.J. (2001). Differential extrageniculostriate and amygdala responses to presentation of emotional faces in a cortically blind field. Brain, 124(6), 1241–1252. CrossRef  Google Scholar 
  138. Morris, J.S., Frith, C.D., Perrett, D.I., Rowland, D., Young, A.W., Calder, A.J., & Dolan, R.J. (1996). A differential neural response in the human amygdala to fearful and happy facial expressions. Nature, 383(6603), 812–815. CrossRef  Google Scholar  PubMed 
  139. Mukamel, R., Ekstrom, A.D., Kaplan, J.T., Iacoboni, M., & Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current Biology, 20, 750–756. CrossRef  Google Scholar  PubMed 
  140. Naccache, L., Dehaene, S., Cohen, L., Habert, M.-O., Guichart-Gomez, E., Galanaud, D., & Willer, J.-C. (2005). Effortless control: Executive attention and conscious feeling of mental effort are dissociable. Neuropsychologia, 43(9), 1318–1328. CrossRef  Google Scholar  PubMed 
  141. Niedenthal, P.M., Brauer, M., Halberstadt, J.B., & Innes-Ker, Å.H. (2001). When did her smile drop? Facial mimicry and the influences of emotional state on the detection of change in emotional expression. Cognition & Emotion, 15(6), 853–864. CrossRef  Google Scholar 
  142. Nowicki, S. (2010). Manual for the receptive tests of the Diagnostic Analysis of Nonverbal Accuracy 2 (DANVA2). Atlanta, GA: Available from Dr Stephen Nowicki, Jr., Department of Psychology, Emory University, email: snowick@emory.edu. Google Scholar 
  143. Nuechterlein, K.H., Green, M.F., Kern, R.S., Baade, L.E., Barch, D.M., Cohen, J.D., & Marder, S.R. (2008). The MATRICS Consensus Cognitive Battery, Part 1: Test selection, reliability, and validity. American Journal of Psychiatry, 165(2), 203–213. CrossRef  Google Scholar  PubMed 
  144. Ohman, A., & Soares, J.J.F. (1994). “Unconscious anxiety”: Phobic responses to masked stimuli. Journal of Abnormal Psychology, 103(2), 231–240. CrossRef  Google Scholar  PubMed 
  145. Park, S., Matthews, N., & Gibson, C. (2008). Imitation, simulation, and schizophrenia. Schizophrenia Bulletin, 34(4), 698–707. CrossRef  Google Scholar 
  146. Penn, D.L., Corrigan, P.W., Bentall, R.P., Racenstein, J.M., & Newman, L. (1997). Social cognition in schizophrenia. Psychological Bulletin, 121, 114–132. CrossRef  Google Scholar  PubMed 
  147. Pfeifer, J.H., Iacoboni, M., Mazziotta, J.C., & Dapretto, M. (2008). Mirroring others’ emotions relates to empathy and interpersonal competence in children. Neuroimage, 39(4), 2076–2085. CrossRef  Google Scholar  PubMed 
  148. Phillips, M.L. (2003). Understanding the neurobiology of emotion perception: Implications for psychiatry. British Journal of Psychiatry, 182(3), 190–192. CrossRef  Google Scholar  PubMed 
  149. Phillips, M.L., Drevets, W.C., Rauch, S.L., & Lane, R. (2003). Neurobiology of emotion perception I: The neural basis of normal emotion perception. Society of Biological Psychiatry, 54, 504–514. CrossRef  Google Scholar  PubMed 
  150. Pistoia, F., Conson, M., Trojano, L., Grossi, D., Ponari, M., Colonnese, C., & Sara, M. (2010). Impaired conscious recognition of negative facial expressions in patients with locked-in syndrome. The Journal of Neuroscience, 30(23), 7838–7844. CrossRef  Google Scholar  PubMed 
  151. Price, C.J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62, 816–847. CrossRef  Google Scholar 
  152. Raz, G., Jacob, Y., Gonen, T., Winetraub, Y., Flash, T., Soreq, E., & Hendler, T. (2013). Cry for her or cry with her: context-dependent dissociation of two modes of cinematic empathy reflected in network cohesion dynamics. Social Cognitive and Affective Neuroscience, 9(1), 30–38. CrossRef  Google Scholar 
  153. Reuter-Lorenz, P., & Davidson, R.J. (1981). Differential contributions of the two cerebral hemispheres to the perception of happy and sad faces. Neuropsychologia, 19, 609–613. CrossRef  Google Scholar  PubMed 
  154. Reynders, H.J., Broks, P., Dickson, J.M., Lee, C.E., & Turpin, G. (2005). Investigation of social and emotion information processing in temporal lobe epilepsy with ictal fear. Epilepsy & Behavior, 7(3), 419–429. CrossRef  Google Scholar  PubMed 
  155. Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Brain Research Cognitive Brain Research, 3(2), 131–141. CrossRef  Google Scholar  PubMed 
  156. Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nature Reviews Neuroscience, 11(4), 264–274. CrossRef  Google Scholar  PubMed 
  157. Roelofs, R.L., Wingbermühle, E., Egger, J.I.M., & Kessels, R.P.C. (2017). Social cognitive interventions in neuropsychiatric patients: A meta-analysis. Brain Impairment, 18(1), 138–173. CrossRef  Google Scholar 
  158. Rolls, E.T. (2000). Memory systems in the brain. Annual Review of Psychology, 51, 599–630. CrossRef  Google Scholar 
  159. Rosenberg, H., McDonald, S., Rosenberg, J., & Westbrook, R.F. (2016). Measuring emotion perception following traumatic brain injury: The Complex Audio Visual Emotion Assessment Task (CAVEAT). Neuropsychological Rehabilitation, 1–19. CrossRef  Google Scholar 
  160. Ross, E.D. (1981). The aprosodias: Functional-anatomic organisation of the affective components of language in the right hemisphere. Archives of Neurology, 38, 561–569. CrossRef  Google Scholar  PubMed 
  161. Ross, E.D., & Mesulam, M.-M. (1979). Dominant language functions of the right hemisphere? Prosody and emotional gesturing. Archives of Neurology, 36(3), 144–148. CrossRef  Google Scholar  PubMed 
  162. Sackeim, H.A., Greenberg, M.S., Weiman, A.L., Gur, R.C., Hungerbuhler, J.P., & Geschwind, N. (1982). Hemispheric asymmetry in the expression of positive and negative emotions. Archives of Neurology, 39, 210–218. CrossRef  Google Scholar  PubMed 
  163. Savla, G.N., Vella, L., Armstrong, C.C., Penn, D.L., & Twamley, E.W. (2013). Deficits in domains of social cognition in schizophrenia: A meta-analysis of the empirical evidence. Schizophrenia Bulletin, 39(5), 979–992. CrossRef  Google Scholar  PubMed 
  164. Satpute, A.B., Kang, J., Bickart, K.C., Yardley, H., Wager, T.D., & Barrett, L.F. (2015). Involvement of sensory regions in affective experience: A meta-analysis. Frontiers in Psychology, 6, 1860. CrossRef  Google Scholar  PubMed 
  165. Saunders, J.C., McDonald, S., & Richardson, R. (2006). Loss of emotional experience after traumatic brain injury: Findings with the startle probe procedure. Neuropsychology, 20(2), 224–231. CrossRef  Google Scholar  PubMed 
  166. Schaefer, M., Heinze, H.-J., & Rotte, M. (2012). Embodied empathy for tactile events: Interindividual differences and vicarious somatosensory responses during touch observation. Neuroimage, 60(2), 952–957. CrossRef  Google Scholar  PubMed 
  167. Scott, S.K., Young, A.W., Calder, A.J., Hellawell, D.J., Aggleton, J.P., & Johnson, M. (1997). Impaired auditory recognition of fear and anger following bilateral amygdala lesions. Nature, 385(6613), 254–257. CrossRef  Google Scholar  PubMed 
  168. Sergerie, K., Chochol, C., & Armony, J.L. (2008). The role of the amygdala in emotional processing: A quantitative meta-analysis of functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 32(4), 811–830. CrossRef  Google Scholar  PubMed 
  169. Shamay-Tsoory, S.G., Tomer, R., Berger, B.D., Goldsher, D., & Aharon-Peretz, J. (2005). Impaired “affective theory of mind” is associated with right ventromedial prefrontal damage. Cognitive and Behavioral Neurology, 18(1), 55–67. CrossRef  Google Scholar  PubMed 
  170. Shimokawa, A., Yatomi, N., Anamizu, S., Torii, S., Isono, H., Sugai, Y., & Kohno, M. (2001). Influence of deteriorating ability of emotional comprehension on interpersonal behavior in Alzheimer-type dementia. Brain and Cognition, 47(3), 423–433. CrossRef  Google Scholar  PubMed 
  171. Silberman, E.K., & Weingartner, H. (1986). Hemispheric lateralization of functions related to emotion. Brain and Cognition, 5(3), 322–353. CrossRef  Google Scholar 
  172. Sonnby-Borgström, M., Jönsson, P., & Svensson, O. (2003). Emotional empathy as related to mimicry reactions at different levels of information processing. Journal of Nonverbal Behavior, 27(1), 3–23. CrossRef  Google Scholar 
  173. Spikman, J.M., Milders, M.V., Visser-Keizer, A.C., Westerhof-Evers, H.J., Herben-Dekker, M., & van der Naalt, J. (2013). Deficits in facial emotion recognition indicate behavioral changes and impaired self-awareness after moderate to severe traumatic brain injury. PLoS One, 8(6), e65581. doi: 10.1371/journal.pone.0065581 CrossRef  Google Scholar  PubMed 
  174. Spikman, J.M., Timmerman, M.E., Milders, M.V., Veenstra, W.S., & van der Naalt, J. (2012). Social cognition impairments in relation to general cognitive deficits, injury severity, and prefrontal lesions in traumatic brain injury patients. Journal of Neurotrauma, 29(1), 101–111. CrossRef  Google Scholar  PubMed 
  175. Sprengelmeyer, R., Young, A.W., Calder, A.J., Karnat, A., Lange, H., Homber, G.V., & Rowland, D. (1996). Loss of disgust: Perception of faces and emotions in Huntington’s disease. Brain: A Journal of Neurology, 119(5), 1647–1665. CrossRef  Google Scholar 
  176. Stuss, D.T., & Benson, D.F. (1986). The frontal lobes. New York: Raven Press. Google Scholar  PubMed 
  177. Toplak, M.E., Sorge, G.B., Benoit, A., West, R.F., & Stanovich, K.E. (2010). Decision-making and cognitive abilities: A review of associations between Iowa Gambling Task performance, executive functions, and intelligence. Clinical Psychology Review, 30(5), 562–581. CrossRef  Google Scholar  PubMed 
  178. Wapner, W., Hamby, S., & Gardner, H. (1981). The role of the right hemisphere in the apprehension of complex linguistic materials. Brain and Language, 14, 15–32. CrossRef  Google Scholar  PubMed 
  179. Wechsler, D. (2009). Advanced clinical solutions for WAIS-IV and WMS-IV: Administration and scoring manual. San Antonio, TX: Pearson Assessment. Google Scholar 
  180. Weinstein, E.A., & Kahn, R.C. (1955). Denial of illness: Symbolic and physiologic aspects. Springfield IL: Thomas. CrossRef  Google Scholar 
  181. Wiig, E., & Secord, W. (2014). Clinical evaluation of language fundamentals. USA: Pearson Assessment. Google Scholar 
  182. Wilde, E.A., Whiteneck, G.G., Bogner, J., Bushnik, T., Cifu, D.X., Dikmen, S., & von Steinbuechel, N. (2010). Recommendations for the use of common outcome measures in traumatic brain injury research. Archives of Physical Medicine and Rehabilitation, 91(11), 1650–1660.e1617. CrossRef  Google Scholar 
  183. Williams, C., & Wood, R.L. (2010). Alexithymia and emotional empathy following traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 32(3), 259–267. CrossRef  Google Scholar  PubMed 
  184. Williams, C., & Wood, R.L. (2012). Affective modulation of the startle reflex following traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 34(9), 948–961. CrossRef  Google Scholar  PubMed 
  185. Wood, R.L., & Williams, C. (2008). Inability to empathize following traumatic brain injury. Journal of the International Neuropsychological Society, 14, 289–296. CrossRef  Google Scholar  PubMed 
  186. Yeates, K.O., Swift, E., Taylor, H.G., Wade, S.L., Drotar, D., Stancin, T., & Minich, N. (2004). Short- and long-term social outcomes following pediatric traumatic brain injury. Journal of the International Neuropsychological Society, 10(3), 412–426. CrossRef  Google Scholar 
Neuropsychological Investigations of Human Amnesia: Insights Into the Role of the Medial Temporal Lobes in Cognition
  • Mieke Verfaellie | Memory Disorders Research Center, VA Boston Healthcare System and Boston University School of Medicine, Boston, Massachusetts
  • Margaret M. Keane | Memory Disorders Research Center, VA Boston Healthcare System and Boston University School of Medicine, Boston, Massachusetts, Wellesley College, Wellesley, Massachusetts

E-mail address | verf@bu.edu

The authors declare no Conflict of Interest.


The past 30 years of research on human amnesia has yielded important changes in our understanding of the role of the medial temporal lobes (MTL) in memory. On the onehand, this body of evidence has highlighted that not all types of memory are impaired in patients with MTL lesions. On the other hand, this research has made apparentthat the role of the MTL extends beyond the domain of long-term memory, to include working memory, perception, and future thinking. In this article, we review thediscoveries and controversies that have characterized this literature and that set the stage for a new conceptualization of the role of the MTL in cognition. Thisshift toward a more nuanced understanding of MTL function has direct relevance for a range of clinical disorders in which the MTL is implicated, potentially shapingnot only theoretical understanding but also clinical practice. (JINS, 2017, 23, 732–740)

  1. Aggleton, J.P., & Shaw, C. (1996). Amnesia and recognition memory: A re-analysis of psychometric data. Neuropsychologia, 34, 51–62. CrossRef  Google Scholar  PubMed 
  2. Baddeley, A., & Warrington, E.K. (1970). Amnesia and the distinction between long- and short-term memory. Journal of Verbal Learning and Verbal Behavior, 9, 176–189. CrossRef  Google Scholar 
  3. Barense, M.D., Ngo, J.K.W., Hung, L.H.T., & Peterson, M.A. (2012). Interactions of memory and perception in amnesia: The figure-ground perspective. Cerebral Cortex, 22, 2680–2691. CrossRef  Google Scholar  PubMed 
  4. Barnabe, A., Whitehead, V., Pilon, R., Arsenault-Lapierre, G., & Chertkow, H. (2012). Autobiographical memory in mild cognitive impairment and Alzheimer’s disease: A comparison between the Levine and Kopelman interview methodologies. Hippocampus, 22, 1809–1825. CrossRef  Google Scholar  PubMed 
  5. Ben-Zvi, S., Soroker, N., & Levy, D.A. (2015). Parietal lesion effects on cued recall following pair associate learning. Neuropsychologia, 73, 176–194. CrossRef  Google Scholar  PubMed 
  6. Berryhill, M.E., Phuong, L., Picasso, L., Cabeza, R., & Olson, I.R. (2007). Parietal damage and episodic memory: Bilateral damage causes impaired free recall of autobiographical memory. Journal of Neuroscience, 27, 14415–14423. CrossRef  Google Scholar  PubMed 
  7. Bertossi, E., Aleo, F., Braghittoni, D., & Ciaramelli, E. (2016). Stuck in the here and now: Construction of fictitious and future experiences following ventromedial prefrontal damage. Neuropsychologia, 81, 107–116. CrossRef  Google Scholar  PubMed 
  8. Blackwell, A.D., Sahakian, B.J., Vesey, R., Semple, J.M., Robbins, T.W., & Hodges, J.R. (2004). Detecting dementia: Novel neuropsychological markers of preclinical Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 17, 42–48. CrossRef  Google Scholar  PubMed 
  9. Bohbot, V.D., Kalina, M., Stepankova, K., Spackova, M., Petrides, M., & Nadel, L. (1998). Spatial memory deficits in patients with lesions to the right hippocampus and to the right parahippocampal cortex. Neuropsychologia, 36, 1217–1238. CrossRef  Google Scholar  PubMed 
  10. Borders, A.A., Aly, M., Parks, C.M., & Yonelinas, A.P. (2017). The hippocampus is particularly important for building associations across stimulus domains. Neuropsychologia, 99, 335–342. CrossRef  Google Scholar  PubMed 
  11. Bowles, B., Crupi, C., Mirsattari, S.M., Pigott, S.E., Parrent, A.G., Pruessner, J.C., & Kohler, S. (2007). Impaired familiarity with preserved recollection after anterior temporal-lobe resection that spares the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 104, 16382–16387. CrossRef  Google Scholar 
  12. Bowles, B., Crupi, C., Pigott, S., Parrent, A., Wiebe, S., Janzen, L., && Kohler, S. (2010). Double dissociation of selective recollection and familiarity impairments following two different surgical treatments for temporal-lobe epilepsy. Neuropsychologia, 48, 2640–2647. CrossRef  Google Scholar  PubMed 
  13. Cohen, N.J., & Eichenbaum, H. (1993). Memory, amnesia, and the hippocampal system. Cambridge, MA: MIT Press. Google Scholar 
  14. Dede, A.J.O., & Smith, C.N. (2016). The functional and structural neuroanatomy of systems consolidation for autobiographical and semantic memory. Current Topics in Behavioral Neuroscience. [Epub ahead of print]. doi: 10.1007/7854_2016_452 CrossRef  Google Scholar 
  15. Della Sala, S., Parra, M.A., Fabi, K., Luzzi, S., & Abrahams, S. (2012). Short-term memory binding is impaired in AD but not in non-AD dementias. Neuropsychologia, 50, 833–840. CrossRef  Google Scholar  PubMed 
  16. Dewar, M., Della Sala, S., Beschin, N., & Cowan, N. (2010). Profound retrograde interference in anterograde amnesia: What interferes? Neuropsychology, 24, 357–367. CrossRef  Google Scholar 
  17. Diana, R.A., Yonelinas, A.P., & Ranganath, C. (2007). Imaging recollection and familiarity in the medial temporal lobe: A three-component model. Trends in Cognitive Sciences, 11, 379–386. CrossRef  Google Scholar  PubMed 
  18. Duff, M.C., Kurczek, J., Rubin, R., Cohen, N.J., & Tranel, D. (2013). Hippocampal amnesia disrupts creative thinking. Hippocampus, 23, 1143–1149. CrossRef  Google Scholar  PubMed 
  19. Eichenbaum, H., Yonelinas, A.R., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123–152. CrossRef  Google Scholar  PubMed 
  20. Foerde, K., Race, E., Verfaellie, M., & Shohamy, D. (2013). A role for the medial temporal lobe in feedback-driven learning: Evidence from amnesia. Journal of Neuroscience, 33, 5698–5704. CrossRef  Google Scholar  PubMed 
  21. Giovanello, K.S., Verfaellie, M., & Keane, M.M. (2003). Disproportionate deficit in associative recognition memory in global amnesia. Cognitive, Affective and Behavioral Neuroscience, 3, 186–194. CrossRef  Google Scholar  PubMed 
  22. Graham, K.S., Barense, M.D., & Lee, A.C.H. (2010). Going beyond LTM in the MTL: A synthesis of neuropsychological and neuroimaging findings on the role of the medial temporal lobe in memory and perception. Neuropsychologia, 48, 831–853. CrossRef  Google Scholar  PubMed 
  23. Hanula, D.E., Tranel, D., & Cohen, N.J. (2006). The long and the short of it: Relational memory impairments in amnesia, even at short lags. Journal of Neuroscience, 26, 8352–8359. CrossRef  Google Scholar 
  24. Hassabis, D., Kumaran, D., Vann, S., & Maguire, E. (2007). Patients with hippocampal amnesia cannot imagine new experiences. Proceedings of the National Academy of Sciences of the United States of America, 104, 1726–1731. CrossRef  Google Scholar  PubMed 
  25. Hayes, S.M., Salat, D.H., & Verfaellie, M. (2012). Default network connectivity in medial temporal lobe amnesia. Journal of Neuroscience, 32, 14622–14629. CrossRef  Google Scholar  PubMed 
  26. Henson, R.N., Greve, A., Cooper, E., Gregori, M., Simons, J.S., Geerligs, L., & Browne, G. (2016). The effects of hippocampal lesions on MRI measures of structural and functional connectivity. Hippocampus, 26, 1447–1463. CrossRef  Google Scholar  PubMed 
  27. Jeneson, A., & Squire, L.R. (2012). Working memory, long-term memory, and medial temporal lobe function. Learning and Memory, 19, 15–25. CrossRef  Google Scholar  PubMed 
  28. Jones, D.T., Mateen, F.J., Lucchinetti, C.F., Jack, C.R., & Welker, K.M. (2011). Default mode network disruption secondary to a lesion in the anterior thalamus. Archives of Neurology, 68, 242–247. CrossRef  Google Scholar  PubMed 
  29. Kan, I.P., Giovanello, K.S., Schnyer, D.M., Makris, N., & Verfaellie, M. (2007). Role of the medial temporal lobes in relational memory: Neuropsychological evidence from a cued recognition paradigm. Neuropsychologia, 45, 2589–2597. CrossRef  Google Scholar  PubMed 
  30. Kirwan, C., Bayley, P.J., Galvan, V., & Squire, L.R. (2008). Detailed recollection of remote autobiographical memory after damage to the medial temporal lobe. Proceedings of the National Academy of Sciences of the United States of America, 105, 2676–2680. CrossRef  Google Scholar  PubMed 
  31. Knowlton, B.J., Mangels, J.A., & Squire, L.R. (1996). A neostriatal habit-learning system in humans. Science, 273, 1399–1402. CrossRef  Google Scholar  PubMed 
  32. Knowlton, B.J., Ramus, S.J., & Squire, L.R. (1992). Intact artificial grammar learning in amnesia: Dissociation of classification learning and explicit memory for specific instances. Psychological Science, 3, 172–179. CrossRef  Google Scholar 
  33. Knutson, A.R., Hopkins, R.A., & Squire, L.R. (2012). Visual discrimination performance, memory, and medial temporal lobe function. Proceedings of the National Academy of Sciences of the United States of America, 109, 13106–13111. CrossRef  Google Scholar  PubMed 
  34. Knutson, A.R., Hopkins, R.A., & Squire, L.R. (2013). A pencil rescues impaired performance on a visual discrimination task in patients with medial temporal lobe lesions. Learning and Memory, 20, 607–610. CrossRef  Google Scholar  PubMed 
  35. Koen, J.D., Borders, A.A., Petzold, M.T., & Yonelinas, A.P. (2016). Visual short-term memory for high resolution associations is impaired in patients with medial temporal lobe damage. Hippocampus, 27, 184–193. CrossRef  Google Scholar  PubMed 
  36. Lah, S., & Miller, L. (2008). Effects of temporal lobe lesions on retrograde amnesia: A critical review. Neuropsychological Review, 18, 24–52. CrossRef  Google Scholar 
  37. Lee, A.C.H., Buckley, M.J., Pegman, S.J., Spiers, H.J., Scahill, V.L., Gaffan, D., & Graham, K.S. (2005). Specialization in the medial temporal lobe for processing of objects and scenes. Hippocampus, 15, 782–797. CrossRef  Google Scholar  PubMed 
  38. Lee, A.C.H., Bussey, T.J., Murray, E.A., Saksida, L.M., Epstein, R.A., Kapur, N., & Graham, K.S. (2005). Perceptual deficits in amnesia: Challenging the medial temporal lobe “mnemonic” view. Neuropsychologia, 43, 1–11. CrossRef  Google Scholar  PubMed 
  39. Lee, A.C.H., Rahman, S., Hodges, J.R., Sahakian, B.J., & Graham, K.S. (2003). Associative and recognition memory for novel objects in dementia: Implications for diagnosis. European Journal of Neuroscience, 18, 1660–1670. CrossRef  Google Scholar  PubMed 
  40. Lee, A.C.H., & Rudebeck, S.R. (2010). Human medial temporal lobe damage can disrupt the perception of single objects. Journal of Neuroscience, 30, 6588–6594. CrossRef  Google Scholar 
  41. Lee, A.C.H., Yeung, L.K., & Barense, M.D. (2012). The hippocampus and visual perception. Frontiers in Human Neuroscience, 6, 1–17. CrossRef  Google Scholar  PubMed 
  42. Levine, B., Svoboda, E., Hay, J.F., Winocur, G., & Moscovitch, M. (2002). Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and Aging, 17, 677–689. CrossRef  Google Scholar  PubMed 
  43. Mayes, A.R., Montaldi, D., & Migo, E. (2007). Associative memory and the medial temporal lobes. Trends in Cognitive Sciences, 11, 126–135. CrossRef  Google Scholar  PubMed 
  44. Mayes, A.R., Holdstock, J.S., Isaac, C.L., Montaldi, D., Grigor, J., Gummer, A., & Norman, K.A. (2004). Associative recognition in a patient with selective hippocampal lesions and relatively normal item recognition. Hippocampus, 14, 763–784. CrossRef  Google Scholar 
  45. Milner, B. (1962). Les troubles de la memoire accompagnant des lesions hippocampiques bilaterales [Memory impairment accompanying bilateral hippocampal lesions]. In P. Passouant (Ed.), Physiologie de I’Hippocampe (pp. 257–272). Paris: C.N.R.S. Google Scholar 
  46. Milner, B., Corkin, S., & Teuber, H.-L. (1968). Further analysis of the hippocampal amnesia syndrome: 14-year follow-up study of H.M. Neuropsychologia, 6, 215–234. CrossRef  Google Scholar 
  47. Moscovitch, M., Nadel, L., Winocur, G., Gilboa, A., & Rosenbaum, R.S. (2006). The cognitive neuroscience of remote episodic, semantic and spatial memory. Current Opinion in Neurobiology, 16, 179–190. CrossRef  Google Scholar  PubMed 
  48. Moscovitch, M., Vriezen, E., & Gottstein, J. (1993). Implicit tests of memory in patients with focal lesions or degenerative brain disorders. In H. Spinnler & F. Boller (Eds.), Handbook of neuropsychology (Vol. 8, pp. 133–173). Amsterdam: Elsevier. Google Scholar 
  49. Nadel, L., & Moscovitch, M.M. (1997). Memory consolidation, retrograde amnesia and the hippocampal complex. Current Opinion in Neurobiology, 7, 217–227. CrossRef  Google Scholar  PubMed 
  50. Olson, I.R., Page, K., Moore, K.S., Chatterjee, A., & Verfaellie, M. (2006). Working memory for conjunctions relies on the medial temporal lobe. Journal of Neuroscience, 26, 4596–4601. CrossRef  Google Scholar  PubMed 
  51. Palombo, D.J., Keane, M.M., & Verfaellie, M. (2015). The medial temporal lobes are critical for reward-based decision making under conditions that promote episodic future thinking. Hippocampus, 23, 345–353. CrossRef  Google Scholar 
  52. Palombo, D.J., Keane, M.M., & Verfaellie, M. (2016). Using future thinking to reduce temporal discounting: Under what circumstances are the medial temporal lobes critical? Neuropsychologia, 89, 437–444. CrossRef  Google Scholar  PubMed 
  53. Pertzov, Y., Miller, T.D., Gorgoraptis, N., Caine, D., Schott, J.M., Butler, C., & Husain, M. (2013). Binding deficits in memory following medial temporal lobe damage in patients with voltage-gated potassium channel complex antibody-associated limbic encephalitis. Brain, 136, 2474–2485. CrossRef  Google Scholar  PubMed 
  54. Quamme, J.R., Yonelinas, A.P., & Norman, K.A. (2007). Effect of unitization on associative recognition in amnesia. Hippocampus, 17, 192–200. CrossRef  Google Scholar  PubMed 
  55. Race, E., Keane, M.M., & Verfaellie, M. (2011). Medial temporal lobe damage causes deficits in episodic memory and episodic future thinking not attributable to deficits in narrative construction. Journal of Neuroscience, 31, 10262–10269. CrossRef  Google Scholar 
  56. Race, E., LaRocque, K.F., Keane, M.M., & Verfaellie, M. (2013). Medial temporal lobe contributions to short-term memory for faces. Journal of Experimental Psychology: General, 142, 1309–1322. CrossRef  Google Scholar  PubMed 
  57. Reber, P.J. (2013). The neural basis of implicit learning and memory: A review of neuropsychological and neuroimaging research. Neuropsychologia, 51, 2026–2042. CrossRef  Google Scholar  PubMed 
  58. Reed, L.J., Lasserson, D., Marsden, P., Stanhope, N., Stevens, T., Bello, F., & Kopelman, M. (2003). FDG-PET findings in the Wernicke-Korsakoff syndrome. Cortex, 39, 1027–1045. CrossRef  Google Scholar  PubMed 
  59. Reed, L.J., Marsden, P., Lasserson, D., Sheldon, N., Lewis, P., Stanhope, N., & Kopelman, M.D. (1999). FDG-PET analysis and findings in amnesia resulting from hypoxia. Memory, 7, 599–612. CrossRef  Google Scholar  PubMed 
  60. Rensen, Y.C.M., Kessels, R.P.C., Migo, E.M., Wester, A.J., Eling, P.A.T.M., & Kopelman, M. (2017). Personal semantic and episodic autobiographical memories in Korsakoff syndrome: A comparison of interview methods. Journal of Clinical and Experimental Neuropsychology, 39, 534–546. CrossRef  Google Scholar  PubMed 
  61. Romero, K., & Moscovitch, M. (2012). Episodic memory and event construction in aging and amnesia. Journal of Memory and Language, 67, 270–284. CrossRef  Google Scholar 
  62. Rosenbaum, R.S., Gilboa, A., & Moscovitch, M. (2014). Case studies continue to illuminate the cognitive neuroscience of memory. Annals of the New York Academy of Sciences, 1316, 105–133. CrossRef  Google Scholar  PubMed 
  63. Rosenbaum, R.S., Moscovitch, M., Foster, J.K., Schnyer, D.M., Gao, F.Q., Kovacevic, N., & Levine, B. (2008). Patterns of autobiographical memory loss in medial temporal lobe amnesic patients. Journal of Cognitive Neuroscience, 20, 1490–1506. CrossRef  Google Scholar  PubMed 
  64. Sadeh, T., Ozubko, J., & Moscovitch, M. (2014). How we forget may depend on how we remember. Trends in Cognitive Sciences, 18, 26–36. CrossRef  Google Scholar  PubMed 
  65. Schacter, D.L., Addis, D.R., & Buckner, R.L. (2007). Remembering the past to imagine the future: The prospective brain. Nature Reviews Neuroscience, 8, 657–661. CrossRef  Google Scholar  PubMed 
  66. Scoville, W., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20, 11–21. CrossRef  Google Scholar  PubMed 
  67. Sheldon, S., McAndrews, M.P., & Moscovitch, M. (2011). Episodic memory processes mediated by the medial temporal lobes contribute to open-ended problem solving. Neuropsychologia, 49, 2439–2447. CrossRef  Google Scholar  PubMed 
  68. Shohamy, D., Myers, C.E., Kalanithi, J., & Gluck, M.A. (2008). Basal ganglia and dopamine contributions to probabilistic category learning. Neuroscience and Biobehavioral Reviews, 32, 219–236. CrossRef  Google Scholar  PubMed 
  69. Shohamy, D., & Turk-Browne, N.B. (2013). Mechanisms for widespread hippocampal involvement in cognition. Journal of Experimental Psychology: General, 142, 1159–1170. CrossRef  Google Scholar  PubMed 
  70. Squire, L.R., & Alvarez, P. (1995). Retrograde amnesia and memory consolidation: A neurobiological perspective. Current Opinion in Neurobiology, 5, 169–177. CrossRef  Google Scholar  PubMed 
  71. Squire, L.R., Stark, C.E.L., & Clark, R.E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279–306. CrossRef  Google Scholar  PubMed 
  72. Squire, L.R., van der Horst, A.S., McDuff, S.G., Frascino, J.C., Hopkins, R.O., & Mauldin, K.N. (2010). Role of the hippocampus in remembering the past and imagining the future. Proceedings of the National Academy of Sciences of the United States of America, 107, 19044–19048. CrossRef  Google Scholar  PubMed 
  73. Squire, L.R., & Wixted, J.T. (2011). The cognitive neuroscience of human memory since H.M. Annual Review of Neuroscience, 34, 259–288. CrossRef  Google Scholar  PubMed 
  74. Vargha-Khadem, F., Gadian, D.G., Watkins, K.E., Connelly, A., Van Paesschen, W., & Mishkin, M. (1997). Differential effects of early hippocampal pathology on episodic and semantic memory. Science, 277, 376–380. CrossRef  Google Scholar  PubMed 
  75. Verfaellie, M., & Keane, M.M. (2001). Scope and limits of implicit memory in amnesia. In B. De Gelder, E. De Haan & C. Heywood (Eds.), Unconscious minds (pp. 151–162). Oxford: Oxford University Press. Google Scholar 
  76. Verfaellie, M., & Keane, M.M. (2002). Impaired and preserved memory processes in amnesia. In L.R. Squire & D.L. Schacter (Eds.), Neuropsychology of memory (3rd ed., pp. 35–46). New York: Guilford Press. Google Scholar 
  77. Verfaellie, M., LaRocque, K.F., & Keane, M.M. (2012). Intact implicit verbal relational memory in medial temporal lobe amnesia. Neuropsychologia, 50, 2100–2106. CrossRef  Google Scholar 
  78. Verfaellie, M., Race, E., & Keane, M.M. (2012). Medial temporal lobe contributions to future thinking: Evidence from neuroimaging and amnesia. Psychologica Belgica, 52, 77–94. CrossRef  Google Scholar  PubMed 
  79. Watson, P.D., Voss, J.L., Warren, D.E., Tranel, D., & Cohen, N.J. (2013). Spatial reconstruction by patients with hippocampal damage is dominated by relational memory errors. Hippocampus, 23, 570–580. CrossRef  Google Scholar  PubMed 
  80. Winocur, G., Moscovitch, M., & Bontempi, B. (2010). Memory formation and long-term retention in humans and animals: Convergence towards a transformation account of hippocampal–neocortical interactions. Neuropsychologia, 48, 2339–2356. CrossRef  Google Scholar  PubMed 
  81. Wixted, J.T., & Squire, L.R. (2011). The medial temporal lobe and the attributes of memory. Trends in Cognitive Sciences, 15, 210–217. CrossRef  Google Scholar 
  82. Yonelinas, A.P. (2013). The hippocampus supports high-resolution binding in the service of perception, working memory and long-term memory. Behavioural Brain Research, 254, 34–44. CrossRef  Google Scholar  PubMed 
What Do Language Disorders Reveal about Brain–Language Relationships? From Classic Models to Network Approaches
  • Nina F. Dronkers | VA Northern California Health Care System, Martinez, California, University of California, Davis, California, National Research University Higher School of Economics, Moscow, Russia
  • Maria V. Ivanova | VA Northern California Health Care System, Martinez, California, National Research University Higher School of Economics, Moscow, Russia
  • Juliana V. Baldo | VA Northern California Health Care System, Martinez, California

E-mail address | dronkers@ucdavis.edu

The authors state no conflicts of interest.


Studies of language disorders have shaped our understanding of brain–language relationships over the last two centuries. This article provides a review of this researchand how our thinking has changed over the years regarding how the brain processes language. In the 19th century, a series of famous case studies linked distinct speechand language functions to specific portions of the left hemisphere of the brain, regions that later came to be known as Broca’s and Wernicke’s areas. One hundred yearslater, the emergence of new brain imaging tools allowed for the visualization of brain injuries in vivo that ushered in a new era of brain-behaviorresearch and greatly expanded our understanding of the neural processes of language. Toward the end of the 20th century, sophisticated neuroimaging approaches allowedfor the visualization of both structural and functional brain activity associated with language processing in both healthy individuals and in those with language disturbance.More recently, language is thought to be mediated by a much broader expanse of neural networks that covers a large number of cortical and subcortical regions and theirinterconnecting fiber pathways. Injury to both grey and white matter has been seen to affect the complexities of language in unique ways that have altered how we thinkabout brain–language relationships. The findings that support this paradigm shift are described here along with the methodologies that helped to discover them, withsome final thoughts on future directions, techniques, and treatment interventions for those with communication impairments. (JINS, 2017,23, 741–754)

  1. Aflalo, T., Kellis, S., Klaes, C., Lee, B., Shi, Y., Pejsa, K., & Andersen, R. (2015). Decoding motor imagery from the posterior parietal cortex of a tetraplecig human. Science, 348(6237), 906–910. https://doi.org/10.7910/DVN/GJDUTV CrossRef  Google Scholar  PubMed 
  2. Alexander, A.L., Lee, J.E., Lazar, M., & Field, A.S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics, 4(3), 316–329. CrossRef  Google Scholar 
  3. Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M., & Evans, A. (2013). BigBrain: An ultrahigh-resolution 3D human brain model. Science, 21, 1472–1475. CrossRef  Google Scholar 
  4. Arévalo, A., Perani, D., Cappa, S., Butler, A., Bates, E., & Dronkers, N. (2007). Action and object processing in aphasia: From nouns and verbs to the effect of manipulability [corrected] [published erratum appears in Brain Lang 2007;102:284]. Brain & Language, 100(1), 79–94. CrossRef  Google Scholar 
  5. Ashburner, J., & Friston, K.J. (2000). Voxel-based morphometry—The methods. NeuroImage, 11(6), 805–821. https://doi.org/10.1006/nimg.2000.0582 CrossRef  Google Scholar 
  6. Bajada, C.J., Lambon Ralph, M.A., & Cloutman, L.L. (2015). Transport for Language South of the Sylvian Fissure: The routes and history of the main tracts and stations in the ventral language network. Cortex, 69, 141–151. https://doi.org/10.1016/j.cortex.2015.05.011 CrossRef  Google Scholar  PubMed 
  7. Baldo, J.V., Katseff, S., & Dronkers, N.F. (2012). Brain regions underlying repetition and auditory-verbal short-term memory deficits in aphasia: Evidence from voxel-based lesion symptom mapping. Aphasiology, 26, 338–354. https://doi.org/10.1080/02687038.2011.602391 CrossRef  Google Scholar  PubMed 
  8. Baldo, J.V., Paulraj, S.R., Curran, B.C., & Dronkers, N.F. (2015). Impaired reasoning and problem-solving in individuals with language impairment due to aphasia or language delay. Frontiers in Psychology, 6, 1–14. https://doi.org/10.3389/fpsyg.2015.01523 CrossRef  Google Scholar  PubMed 
  9. Baldo, J.V., Wilson, S.M., & Dronkers, N.F. (2012). Uncovering the neural substrates of language: A voxel-based lesion symptom mapping approach. Advances in the Neural Substrates of Language: Toward a Synthesis of Basic Science and Clinical Research, 1–18. https://doi.org/10.1002/9781118432501.ch28 Google Scholar 
  10. Bastiaanse, R., Edwards, S., Mass, E., & Rispens, J. (2003). Assessing comprehension and production of verbs and sentences: The Verb and Sentence Test (VAST). Aphasiology, 17(1), 49–73. https://doi.org/10.1080/729254890 CrossRef  Google Scholar 
  11. Bates, E., Chen, S., Tzeng, O., Li, P., & Opie, M. (1991). The noun-verb problem in Chinese aphasia. Brain & Language, 41, 203–233. CrossRef  Google Scholar  PubMed 
  12. Bates, E., Wilson, S.M., Saygin, A.P., Dick, F., Sereno, M.I., Knight, R.T., & Dronkers, N.F. (2003). Voxel-based lesion-symptom mapping. Nature Neuroscience, 6(5), 448–450. https://doi.org/10.1038/nn1050 CrossRef  Google Scholar  PubMed 
  13. Bates, E., Wulfeck, B., & MacWhinney, B. (1991). Cross-linguistic research in aphasia: An overview. Brain and Language, 41(2), 123–148. https://doi.org/10.1016/0093-934X(91)90149-U CrossRef  Google Scholar  PubMed 
  14. Binder, J.R., Frost, J.A., Hammeke, T.A., Cox, R.W., Rao, S.M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. The Journal of Neuroscience, 17(1), 353–362. Google Scholar  PubMed 
  15. Bogen, J.E., & Bogen, G.M. (1976). Wernicke’s region-Where is it? Annals of the New York Academy of Sciences, 280, 834–843. CrossRef  Google Scholar 
  16. Bornkessel-Schlesewsky, I., Schlesewsky, M., Small, S.L., & Rauschecker, J.P. (2015). Neurobiological roots of language in primate audition: Common computational properties. Trends in Cognitive Sciences, 19(3), 142–150. https://doi.org/10.1016/j.tics.2014.12.008 CrossRef  Google Scholar  PubMed 
  17. Breier, J.I., Hasan, K.M., Zhang, W., Men, D., & Papanicolaou, A.C. (2008). Language dysfunction after stroke and damage to white matter tracts evaluated using diffusion tensor imaging. AJNR American Journal of Neuroradiology, 29(3), 483–487. https://doi.org/10.3174/ajnr.A0846 CrossRef  Google Scholar 
  18. Broca, P. (1861a). Nouvelle observation d’aphémie produite par une lésion de la troisième circonvolution frontale. Bulletins de La Société D’anatomie (Paris), 2e Serie, 6, 398–407. Google Scholar 
  19. Broca, P. (1861b). Perte de la parole: Ramollissement chronique et destruction partielle du lobe anterieur gauche du cerveau. Bulletins de La Societe D’anthropologie, 1re Serie, 2, 235–238. Google Scholar 
  20. Broca, P. (1864). Sur les mots aphemie, aphasie et aphrasie; Lettre a M. le Professeur Trousseau. Gazette Des Hopitaux, 23(janvier). Google Scholar 
  21. Broca, P. (1865). Sur le siege de la faculte du langage articule. Bulletin de La Societe d’Anthropologie, 6, 337–393. Google Scholar 
  22. Caramazza, A., & Hillis, A.E. (1991). Lexical organization of nouns and verbs in the brain. Nature, 349(6312), 788–790. https://doi.org/10.1038/349788a0 CrossRef  Google Scholar 
  23. Catani, M., Howard, R.J., Pajevic, S., & Jones, D.K. (2002). Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage, 17(1), 77–94. https://doi.org/10.1006/nimg.2002.1136 CrossRef  Google Scholar 
  24. Catani, M., & Mesulam, M.M. (2008). The arcuate fasciculus and the disconnection theme in language and aphasia: History and current state. Cortex, 44(8), 953–961. https://doi.org/10.1016/j.cortex.2008.04.002.The CrossRef  Google Scholar 
  25. Chang, E.F., Raygor, K.P., & Berger, M.S. (2015). Contemporary model of language organization: An overview for neurosurgeons. Journal of Neurosurgery, 122, 250–261. https://doi.org/10.3171/2014.10.JNS132647 CrossRef  Google Scholar 
  26. Cho-Reyes, S., & Thompson, C.K. (2012). Verb and sentence production and comprehension in aphasia: Northwestern Assessment of Verbs and Sentences (NAVS). Aphasiology, 26(10), 1250–1277. https://doi.org/10.1080/02687038.2012.693584 CrossRef  Google Scholar 
  27. Code, C. (2001). Multifactorial processes in recovery from aphasia: Developing the foundations for a multileveled framework. Brain and Language, 77(1), 25–44. https://doi.org/10.1006/brln.2000.2420 CrossRef  Google Scholar  PubMed 
  28. Cordes, D., Haughton, V.M., Arfanakis, K., Wendt, G.J., Turski, P.A., Moritz, C.H., & Meyerand, M.E. (2000). Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR American Journal of Neuroradiology, 21(9), 1636–1644. Google Scholar  PubMed 
  29. Crinion, J.T., & Leff, A.P. (2007). Recovery and treatment of aphasia after stroke: Functional imaging studies. Current Opinion in Neurology, 20(6), 667–673. https://doi.org/10.1097/WCO.0b013e3282f1c6fa CrossRef  Google Scholar  PubMed 
  30. Damasio, H., Tranel, D., Grabowski, T., Adolphs, R., & Damasio, A. (2004). Neural systems behind word and concept retrieval. Cognition, 92(1–2), 179–229. https://doi.org/10.1016/j.cognition.2002.07.001 CrossRef  Google Scholar  PubMed 
  31. Dehaene, S. (2009). Reading in the brain: The new science of how we read. New York, NY: Penguin Books. Google Scholar 
  32. Dell’Acqua, F., Simmons, A., Williams, S.C.R., & Catani, M. (2013). Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true-tract specific index to characterize white matter diffusion. Human Brain Mapping, 34(10), 2464–2483. https://doi.org/10.1002/hbm.22080 CrossRef  Google Scholar  PubMed 
  33. Démonet, J.F., Puel, M., Celsis, P., & Cardebat, D. (1991). “Subcortical” aphasia: Some proposed pathophysiological mechanisms and their rCBF correlates revealed by SPECT. Journal of Neurolinguistics, 6(3), 319–344. https://doi.org/10.1016/0911-6044(91)90025-E CrossRef  Google Scholar 
  34. Dick, A.S., Bernal, B., & Tremblay, P. (2014). The language connectome: New pathways, new concepts. The Neuroscientist, 20(5), 453–467. https://doi.org/10.1177/1073858413513502 CrossRef  Google Scholar  PubMed 
  35. Dick, F., Bates, E., Wulfeck, B., Utman, J., Dronkers, N.F., & Gernsbacher, M. (2001). Language deficits, localization and grammar: Evidence for a distributive model of language breakdown in aphasics and normals. Psychological Review, 108(4), 759–788. CrossRef  Google Scholar 
  36. Dronkers, N.F. (1996). A new brain region for coordinating speech articulation. Nature, 384, 159–161. CrossRef  Google Scholar  PubMed 
  37. Dronkers, N.F., & Baldo, J.V. (2010). Language: Aphasia. In Encyclopedia of Neuroscience (pp. 343–348). https://doi.org/10.1016/B978-008045046-9.01876-3 Google Scholar 
  38. Dronkers, N.F., & Ludy, C.A. (1998). Brain lesion analysis in clinical research. In B. Stemmer & H.A. Whitaker (Eds.), Handbook of neurolinguistics (pp. 173–187). San Diego, CA: Academic Press. CrossRef  Google Scholar 
  39. Dronkers, N.F., Plaisant, O., Iba-Zizen, M.T., & Cabanis, E.A. (2007). Paul Broca’s historic cases: High resolution MR imaging of the brains of Leborgne and Lelong. Brain, 130(Pt 5), 1432–1441. https://doi.org/10.1093/brain/awm042 CrossRef  Google Scholar  PubMed 
  40. Dronkers, N.F., Redfern, B.B., & Knight, R.T. (2000). The neural architecture of language disorders. In M.S. Gazzaniga (Ed.), The new cognitive neurosciences (pp. 949–958). Cambridge: The MIT Press. Google Scholar 
  41. Dronkers, N.F., Redfern, B.B., & Ludy, C.A. (1995). Lesion localization in chronic Wernicke’s aphasia. Brain and Language, 51(1), 62–65. Google Scholar 
  42. Dronkers, N.F., Wilkins, D.P., Van Valin, R.D., Redfern, B.B., & Jaeger, J.J. (2004). Lesion analysis of the brain areas involved in language comprehension. Cognition, 92(1–2), 145–177. https://doi.org/10.1016/j.cognition.2003.11.002CrossRef  Google Scholar  PubMed 
  43. Duffau, H. (2014). The huge plastic potential of adult brain and the role of connectomics: New insights provided by serial mappings in glioma surgery. Cortex, 58, 325–337. https://doi.org/10.1016/j.cortex.2013.08.005 CrossRef  Google Scholar  PubMed 
  44. Flinker, A., Korzeniewska, A., Shestyuk, A.Y., Franaszczuk, P.J., Dronkers, N.F., Knight, R.T., & Crone, N.E. (2015). Redefining the role of Broca’s area in speech. Proceedings of the National Academy of Sciences of the United States of America, 112(9), 2871–2875. https://doi.org/10.1073/pnas.1414491112 CrossRef  Google Scholar 
  45. Freud, S. (1891). On aphasia (E. (Translation) Stengel Ed.). New York: International University Press. Google Scholar 
  46. Fridriksson, J., Richardson, J.D., Fillmore, P., & Cai, B. (2012). Left hemisphere plasticity and aphasia recovery. NeuroImage, 60(2), 854–863. https://doi.org/10.1016/j.neuroimage.2011.12.057 CrossRef  Google Scholar  PubMed 
  47. Friederici, A.D., & Singer, W. (2015). Grounding language processing on basic neurophysiological principles. Trends in Cognitive Sciences, 19, 329–338. https://doi.org/10.1016/j.tics.2015.03.012 CrossRef  Google Scholar  PubMed 
  48. Gainotti, G., Silveri, M.C., Daniel, A., & Giustolisi, L. (1995). Neuroanatomical correlates of category-specific semantic disorders: A critical survey. Memory, 3(3–4), 247–263. https://doi.org/10.1080/09658219508253153 CrossRef  Google Scholar  PubMed 
  49. Geranmayeh, F., Brownsett, S.L.E., & Wise, R.J.S. (2014). Task-induced brain activity in aphasic stroke patients: What is driving recovery? Brain, 137(Pt 10), 2632–2648. https://doi.org/10.1093/brain/awu163 CrossRef  Google Scholar  PubMed 
  50. Geschwind, N. (1965). Disconnexion syndromes in animals and man. I. Brain, 88, 237–294. CrossRef  Google Scholar  PubMed 
  51. Goldstein, K. (1948). Language and language disturbances: Aphasic symptom complexes and their significance for medicine and theory of language. New York: Grune & Stratton. Google Scholar 
  52. Goodglass, H., & Kaplan, E. (1972). The assessment of aphasia and related disorders. Philadelphia: Lea & Febiger. Google Scholar 
  53. Gorno-Tempini, M.L., Dronkers, N.F., Rankin, K.P., Ogar, J.M., Phengrasamy, L., Rosen, H.J., & Miller, B.L. (2004). Cognition and anatomy in three variants of primary progressive aphasia. Annals of Neurology, 55(3), 335–346. https://doi.org/10.1002/ana.10825 CrossRef  Google Scholar  PubMed 
  54. Grossman, M., Powers, J., Ash, S., McMillan, C., Burkholder, L., Irwin, D., & Trojanowski, J.Q. (2013). Disruption of large-scale neural networks in non-fluent/agrammatic variant primary progressive aphasia associated with frontotemporal degeneration pathology. Brain and Language, 127(2), 106–120. https://doi.org/10.1016/j.bandl.2012.10.005 CrossRef  Google Scholar  PubMed 
  55. Hagoort, P., & Indefrey, P. (2014). The neurobiology of language beyond single words. Annual Review of Neuroscience, 37, 347–362. https://doi.org/10.1146/annurev-neuro-071013-013847 CrossRef  Google Scholar  PubMed 
  56. Hamilton, R.H., Chrysikou, E.G., & Coslett, B. (2011). Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. Brain and Language, 118(1–2), 40–50. https://doi.org/10.1016/j.bandl.2011.02.005 CrossRef  Google Scholar  PubMed 
  57. Head, H. (1926). No Title. In Aphasia and kindred disorders of speech. New York: Macmillan. Google Scholar 
  58. Heiss, W.-D., Kessler, J., Thiel, A., Ghaemi, M., & Karbe, H. (1999). Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Annals of Neurology, 45(4), 430–438. https://doi.org/10.1002/1531-8249(199904)45:4<430::AID-ANA3>3.0.CO;2-P3.0.CO;2-P>CrossRef Google Scholar  PubMed 
  59. Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews. Neuroscience, 8(5), 393–402. https://doi.org/10.1038/nrn2113 CrossRef  Google Scholar  PubMed 
  60. Hodges, J.R., Patterson, K., Oxbury, S., & Funnell, E. (1992). Semantic dementia. Brain, 115, 1783–1806. https://doi.org/10.1093/brain/115.6.1783 CrossRef  Google Scholar  PubMed 
  61. Howard, D., Swinburn, K., & Porter, G. (2010). Putting the CAT out: What the comprehensive aphasia test has to offer. Aphasiology, 24(1), 56–74. https://doi.org/10.1080/02687030802453202 CrossRef  Google Scholar 
  62. Inoue, K., Madhyastha, T., Rudrauf, D., Mehta, S., & Grabowski, T. (2014). What affects detectability of lesion-deficit relationships in lesion studies? NeuroImage: Clinical, 6, 388–397. https://doi.org/10.1016/j.nicl.2014.10.002 CrossRef  Google Scholar  PubMed 
  63. Ivanova, M.V., Isaev, D.Y., Dragoy, O.V., Akinina, Y.S., Petrushevskiy, A.G., Fedina, O.N., & Dronkers, N.F. (2016). Diffusion-tensor imaging of major white matter tracts and their role in language processing in aphasia. Cortex, 85, 165–181. https://doi.org/10.1016/j.cortex.2016.04.019CrossRef  Google Scholar  PubMed 
  64. Ivanova, M.V., Dragoy, O.V., Kuptsova, S.V., Ulicheva, A.S., & Laurinavichyute, A.K. (2015). The contribution of working memory to language comprehension: Differential effect of aphasia type. Aphasiology, 29, 645–664. https://doi.org/10.1080/02687038.2014.975182 CrossRef  Google Scholar 
  65. Jackson, J.H. (1878). On affectations of speech from diseases of the brain. I. Brain, 1, 304–330. CrossRef  Google Scholar 
  66. Jackson, J.H. (1879). On affectations of speech from diseases of the brain. II. Brain, 2, 323–356. CrossRef  Google Scholar 
  67. Jarso, S., Li, M., Faria, A., Davis, C., Leigh, R., Sebastian, R., & Hillis, A.E. (2013). Distinct mechanisms and timing of language recovery after stroke. Cognitive Neuropsychology, 30(7–8), 454–475. https://doi.org/10.1080/02643294.2013.875467 CrossRef  Google Scholar  PubMed 
  68. Kalladka, D., Sinden, J., Pollock, K., Haig, C., McLean, J., Smith, W., & Muir, K.W. (2016). Human neural stem cells in patients with chronic ischaemic stroke (PISCES): A phase 1, first-in-man study. The Lancet, 388(10046), 787–796. https://doi.org/10.1016/S0140-6736(16)30513-X CrossRef  Google Scholar 
  69. Kaplan, E., Goodglass, H., & Weintraub, S. (1983). Boston Naming Test. Philadelphia: Lea and Febiger. Google Scholar 
  70. Kay, J., Lesser, R. & Coltheart, M. (1992). Psycholinguistic assessments of language processing in aphasia (PALPA). Lawrence Erlbaum. Google Scholar 
  71. Kay, J., Lesser, R., & Coltheart, M. (1996). Psycholinguistic assessments of language processing in aphasia (PALPA): An introduction. Aphasiology, 10(2), 159–180. https://doi.org/10.1080/02687039608248403 CrossRef  Google Scholar 
  72. Kertesz, A. (1982). Western aphasia battery. New York: Grune and Stratton. Google Scholar 
  73. Kertesz, A., Harlock, W., & Coates, R. (1979). Computer tomographic localization, lesion size, and prognosis in aphasia and nonverbal impairment. Brain and Language, 8, 34–50. CrossRef  Google Scholar  PubMed 
  74. Kümmerer, D., Hartwigsen, G., Kellmeyer, P., Glauche, V., Mader, I., Klöppel, S., & Saur, D. (2013). Damage to ventral and dorsal language pathways in acute aphasia. Brain, 136(Pt 2), 619–629. https://doi.org/10.1093/brain/aws354 CrossRef  Google Scholar  PubMed 
  75. Kutas, M., & Hillyard, S.A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 11, 203–205. https://doi.org/10.1126/science.7350657 CrossRef  Google Scholar 
  76. Lambon Ralph, M.A., Ehsan, S., Baker, G.A., & Rogers, T.T. (2012). Semantic memory is impaired in patients with unilateral anterior temporal lobe resection for temporal lobe epilepsy. Brain, 135(Pt 1), 242–258. https://doi.org/10.1093/brain/awr325 CrossRef  Google Scholar  PubMed 
  77. Lashley, K. (1950). In search of the engram. Society of Experimental Biology Symposium, 4, 454–482. Google Scholar 
  78. Lichtheim, L. (1885). On aphasia. Brain, 7, 433–484. CrossRef  Google Scholar 
  79. Lorch, M. (2013). Written language production disorders: Historical and recent perspectives. Current Neurology and Neuroscience Reports, 13, 369. https://doi.org/10.1007/s11910-013-0369-9 CrossRef  Google Scholar  PubMed 
  80. Luria, A.R. (1947). Traumatic aphasia. The Hague: Reprinted in translation, Mouton, 1970. Google Scholar 
  81. Luria, A.R. (1966). Higher cortical functions in man. New York: Basic Books. Google Scholar 
  82. MacKay, D.G., Stewart, R., & Burke, D.M. (1998). H.M. Revisited: Relations between language comprehension, memory, and the hippocampal system. Journal of Cognitive Neuroscience, 10(3), 377–394. https://doi.org/10.1162/089892998562807 CrossRef  Google Scholar  PubMed 
  83. Mah, Y.H., Husain, M., Rees, G., & Nachev, P. (2014). Human brain lesion-deficit inference remapped. Brain, 137(9), 2522–2531. https://doi.org/10.1093/brain/awu164 CrossRef  Google Scholar  PubMed 
  84. Marangolo, P., Fiori, V., Calpagnano, M.A., Campana, S., Razzano, C., Caltagirone, C., & Marini, A. (2013). tDCS over the left inferior frontal cortex improves speech production in aphasia. Frontiers in Human Neuroscience, 7, 539. https://doi.org/10.3389/fnhum.2013.00539 CrossRef  Google Scholar  PubMed 
  85. Mariën, P., Ackermann, H., Adamaszek, M., Barwood, C.H.S., Beaton, A., Desmond, J., & Ziegler, W. (2014). Consensus paper: Language and the cerebellum: An ongoing enigma. Cerebellum, 13(3), 386–410. https://doi.org/10.1007/s12311-013-0540-5 Google Scholar 
  86. Mechelli, A., Price, C.J., Friston, K.J., & Ashburner, J. (2005). Voxel-based morphometry applications of the human brain: Methods and applications. Current Medical Imaging Reviews, 1, 1–9. https://doi.org/10.2174/1573405054038726 CrossRef  Google Scholar 
  87. Mesgarani, N., Cheung, C., Johnson, K., & Chang, E.F. (2014). Phonetic feature encoding in human superior temporal gyrus. Science, 343(6174), 1006–1010. https://doi.org/10.1126/science.1245994 CrossRef  Google Scholar  PubMed 
  88. Mesulam, M.-M. (2001). Primary progressive aphasia. Annals of Neurology, 49(4), 425–432. https://doi.org/10.1002/ana.91 CrossRef  Google Scholar  PubMed 
  89. Metter, E.J., Jackson, C., Kempler, D., Riege, W.H., Hanson, W.R., Mazziotta, J.C., & Phelps, M.E. (1986). Left hemisphere intracerebral hemorrhages studied by (F-18)- fluorodeoxyglucose PET. Neurology, 36(9), 1155–1162. CrossRef  Google Scholar  PubMed 
  90. Mirman, D., Chen, Q., Zhang, Y., Wang, Z., Faseyitan, O.K., Coslett, H.B., & Schwartz, M.F. (2015). Neural organization of spoken language revealed by lesion–symptom mapping. Nature Communications, 6, 6762. https://doi.org/10.1038/ncomms7762 CrossRef  Google Scholar  PubMed 
  91. Mohr, J.P. (1976). Broca’s area and Broca’s aphasia. In H. Whitaker (Ed.), Studies in neurolinguistics, Volume 1, (pp. 201–233). New York: Academic Press. Google Scholar 
  92. Muller, A.M., & Meyer, M. (2014). Language in the brain at rest: New insights from resting state data and graph theoretical analysis. Frontiers in Human Neuroscience, 8, 228. https://doi.org/10.3389/fnhum.2014.00228 CrossRef  Google Scholar 
  93. Mummery, C.J., Shallice, T., & Price, C.J. (1999). Dual-process model in semantic priming: A functional imaging perspective. NeuroImage, 9, 516–525. CrossRef  Google Scholar  PubMed 
  94. Nadeau, S.E., & Crosson, B. (1997). Subcortical aphasia. Brain and Cognition, 58, 355–402. https://doi.org/10.1006/brln.1997.1707 Google Scholar  PubMed 
  95. Naeser, M.A., & Hayward, R.W. (1978). Naeser 1978 - Lesion localization in aphasia with cranial computed tomography and the Boston Diagnostic Aphasia Exam. Neurology, 28, 545–551. CrossRef  Google Scholar  PubMed 
  96. Naeser, M.A., Martin, P.I., Nicholas, M., Baker, E.H., Seekins, H., Kobayashi, M., & Pascual-Leone, A. (2005). Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: An open-protocol study. Brain and Language, 93(1), 95–105. https://doi.org/10.1016/j.bandl.2004.08.004 CrossRef  Google Scholar  PubMed 
  97. Nair, V.A., Young, B.M., La, C., Reiter, P., Nadkarni, T.N., Song, J., & Prabhakaran, V. (2015). Functional connectivity changes in the language network during stroke recovery. Annals of Clinical and Translational Neurology, 2(2), 185–195. https://doi.org/10.1002/acn3.165 CrossRef  Google Scholar  PubMed 
  98. Ojemann, G., Ojemann, J., Lettich, E., & Berger, M. (1989). Cortical language localization in left, dominant hemisphere. Journal of Neurosurgery, 71(3), 316–326. https://doi.org/10.3171/jns.1989.71.3.0316 CrossRef  Google Scholar  PubMed 
  99. Paradis, M. (2004). A neurolinguistic theory of bilingualism. Amsterdam/Philadelphia: John Benjamins. CrossRef  Google Scholar 
  100. Penfield, W., & Roberts, L. (1959). Speech and brain mechanisms. Princeton, NJ: Princeton University Press. Google Scholar  PubMed 
  101. Perani, D., Cappa, S.F., Tettamanti, M., Rosa, M., Scifo, P., Miozzo, A., & Fazio, F. (2003). A fMRI study of word retrieval in aphasia. Brain and Language, 85(3), 357–368. CrossRef  Google Scholar  PubMed 
  102. Piai, V., Anderson, K.L., Lin, J.J., Dewar, C., Parvizi, J., Dronkers, N.F., & Knight, R.T. (2016). Direct brain recordings reveal hippocampal rhythm underpinnings of language processing. Proceedings of the National Academy of Sciences of the United States of America, 4, 11366–11371. https://doi.org/10.1073/pnas.1603312113 CrossRef  Google Scholar 
  103. Poizner, H., Klima, E., & Bellugi, U. (1990). What the hands reveal about the brain. Cambridge, MA: The MIT Press. Retrieved from https://mitpress.mit.edu/authors/howard-poizner Google Scholar 
  104. Porch, B.E. (1967). Porch index of communicative ability. Palo Alto, CA: Consulting Psychologists Press. Google Scholar  PubMed 
  105. Price, C.J. (2000). The anatomy of language: Contributions from functional imaging. Journal of Anatomy, 197, 335–359. CrossRef  Google Scholar 
  106. Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., & Shulman, G.L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682. https://doi.org/10.1073/pnas.98.2.676 CrossRef  Google Scholar 
  107. Riès, S.K., Karzmark, C.R., Navarrete, E., Knight, R.T., & Dronkers, N.F. (2015). Specifying the role of the left prefrontal cortex in word selection. Brain and Language, 149, 135–147. https://doi.org/10.1016/j.bandl.2015.07.007 CrossRef  Google Scholar  PubMed 
  108. Rorden, C., & Karnath, H. (2004). Using human brain lesions to infer function: A relic from a past era in the fMRI age? Nature Reviews. Neuroscience, 5(10), 813–819. https://doi.org/10.1038/nrn1521 CrossRef  Google Scholar  PubMed 
  109. Rosen, H.J., Petersen, S.E., Linenweber, M.R., Snyder, A.Z., White, D.A., Chapman, L., & Corbetta, M.D. (2000). Neural correlates of recovery from aphasia after damage to left inferior frontal cortex. Neurology, 55(12), 1883–1894. CrossRef  Google Scholar  PubMed 
  110. Sanai, N., Mirzadeh, Z., & Berger, M.S. (2008). Functional outcome after language mapping for glioma resection. New England Journal of Medicine, 358(1), 18–27. https://doi.org/10.1056/NEJMoa067819 CrossRef  Google Scholar  PubMed 
  111. Saur, D., Kreher, W., Schnell, S., Ku, D., Vry, M., Umarova, R., & Rijntjes, M. (2008). Ventral and dorsal pathways for language. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 18035–18040. https://doi.org/http://doi.org/10.1073/pnas.0805234105 CrossRef  Google Scholar  PubMed 
  112. Saur, D., Lange, R., Baumgaertner, A., Schraknepper, V., Willmes, K., Rijntjes, M., & Weiller, C. (2006). Dynamics of language reorganization after stroke. Brain, 129(6), 1371–1384. https://doi.org/10.1093/brain/awl090 CrossRef  Google Scholar  PubMed 
  113. Schlaug, G., Marchina, S., & Norton, A. (2009). Evidence for plasticity in white-matter tracts of patients with chronic Broca’s aphasia undergoing intense intonation-based speech therapy. Annals of the New York Academy of Sciences, 1169, 385–394. https://doi.org/10.1111/j.1749-6632.2009.04587.x CrossRef  Google Scholar  PubMed 
  114. Schlaug, G., Marchina, S., & Wan, C.Y. (2011). The use of non-invasive brain stimulation techniques to facilitate recovery from post-stroke aphasia. Neuropsychology Review, 21(3), 288–301. https://doi.org/10.1007/s11065-011-9181-y CrossRef  Google Scholar 
  115. Schuell, H. (1965). Differential diagnosis of aphasia with the Minnesota Test. Minneapolis: University of Minnesota Press. Google Scholar  PubMed 
  116. Schwartz, M.F., Faseyitan, O., Kim, J., & Coslett, H.B. (2012). The dorsal stream contribution to phonological retrieval in object naming. Brain, 135(12), 3799–3814. https://doi.org/10.1093/brain/aws300 CrossRef  Google Scholar  PubMed 
  117. Semenza, C. (2009). The neuropsychology of proper names. Mind and Language, 24(4), 347–369. https://doi.org/10.1111/j.1468-0017.2009.01366.x CrossRef  Google Scholar 
  118. Smith, S.M., Vidaurre, D., Beckmann, C.F., Glasser, M.F., Jenkinson, M., Miller, K.L., & Van Essen, D.C. (2013). Functional connectomics from resting-state fMRI. Trends in Cognitive Sciences, 17(12), 666–682. https://doi.org/10.1016/j.tics.2013.09.016 CrossRef  Google Scholar  PubMed 
  119. Snowden, J., Goulding, P., & Neary, D. (1989). Semantic dementia: A form of circumscribed cerebral atrophy. Behavioural Neurology, 2(3), 167–182. https://doi.org/MCI-Converted #101; Thesis_references-Converted #324 Google Scholar 
  120. Steinberg, G.K., Kondziolka, D., Wechsler, L.R., Lunsford, L.D., Coburn, M.L., Billigen, J.B., & Schwartz, N.E. (2016). Clinical outcomes of transplanted modified bone marrow–derived mesenchymal stem cells in stroke. Stroke, 47(7), 1817–1824. https://doi.org/10.1161/STROKEAHA.116.012995 CrossRef  Google Scholar  PubMed 
  121. Sung, J.E., McNeil, M.R., Pratt, S.R., Dickey, M.W., Hula, W.D., Szuminsky, N.J., & Doyle, P.J. (2009). Verbal working memory and its relationship to sentence-level reading and listening comprehension in persons with aphasia. Aphasiology, 23(7–8), 1040–1052. https://doi.org/10.1080/02687030802592884 CrossRef  Google Scholar 
  122. Thompson, C.K., & den Ouden, D.B. (2008). Neuroimaging and recovery of language in aphasia. Current Neurology and Neuroscience Reports, 8(6), 475–483. https://doi.org/10.1007/s11910-008-0076-0 CrossRef  Google Scholar  PubMed 
  123. Tomasi, D., & Volkow, N.D. (2012). Resting functional connectivity of language networks: Characterization and reproducibility. Molecular Psychiatry, 17(8), 841–854. https://doi.org/10.1038/mp.2011.177 CrossRef  Google Scholar  PubMed 
  124. Tournier, J., Mori, S., & Leemans, a. (2011). Diffusion tensor imaging and beyond. Magnetic Resonance in Medicine, 65(6), 1532–1556. https://doi.org/10.1002/mrm.22924.Diffusion CrossRef  Google Scholar 
  125. Turken, A.U., & Dronkers, N.F. (2011). The neural architecture of the language comprehension network: Converging evidence from lesion and connectivity analyses. Frontiers in Systems Neuroscience, 5, 1. https://doi.org/10.3389/fnsys.2011.00001 CrossRef  Google Scholar  PubMed 
  126. Tyler, L.K., Marslen-Wilson, W.D., Randall, B., Wright, P., Devereux, B.J., Zhuang, J., & Stamatakis, E.A. (2011). Left inferior frontal cortex and syntax: Function, structure and behaviour in patients with left hemisphere damage. Brain, 134(Pt 2), 415–431. https://doi.org/10.1093/brain/awq369 CrossRef  Google Scholar  PubMed 
  127. van Hees, S., Mcmahon, K., Angwin, A., de Zubicaray, G., Read, S., & Copland, D.A. (2014a). A functional MRI study of the relationship between naming treatment outcomes and resting state functional connectivity in post-stroke aphasia. Human Brain Mapping, 35(8), 3919–3931. https://doi.org/10.1002/hbm.22448 CrossRef  Google Scholar  PubMed 
  128. van Hees, S., McMahon, K., Angwin, A., de Zubicaray, G., Read, S., & Copland, D.A. (2014b). Changes in white matter connectivity following therapy for anomia post stroke. Neurorehabilitation and Neural Repair, 28(4), 325–334. https://doi.org/10.1177/1545968313508654 CrossRef  Google Scholar  PubMed 
  129. Vigneau, M., Beaucousin, V., Hervé, P.-Y., Jobard, G., Petit, L., Crivello, F., & Tzourio-Mazoyer, N. (2011). What is right-hemisphere contribution to phonological, lexico-semantic, and sentence processing? NeuroImage, 54(1), 577–593. https://doi.org/10.1016/j.neuroimage.2010.07.036 CrossRef  Google Scholar  PubMed 
  130. Warrington, E.K. (1975). The selective impairment of semantic memory. The Quarterly Journal of Experimental Psychology, 27, 635–657. https://doi.org/10.1080/14640747508400525 CrossRef  Google Scholar  PubMed 
  131. Warrington, E.K. & Shallice, T. (1984). Category specific semantic impairments. Brain, 107, 829–854. CrossRef  Google Scholar  PubMed 
  132. Weiller, C., Isensee, C., Rijntjes, M., Huber, W., Müller, S., Bier, D., & Diener, H.C. (1995). Recovery from wernicke’s aphasia: A positron emission tomographic study. Annals of Neurology, 37(6), 723–732. https://doi.org/10.1002/ana.410370605 CrossRef  Google Scholar  PubMed 
  133. Wernicke, C. (1874). Der aphasische Symptomencomplex. Breslau: Kohn and Weigert. Google Scholar 
  134. Wilson, S.M., Galantucci, S., Tartaglia, M.C., Rising, K., Patterson, D.K., Henry, M.L., & Gorno-Tempini, M.L. (2011). Syntactic processing depends on dorsal language tracts. Neuron, 72(2), 397–403. https://doi.org/10.1016/j.neuron.2011.09.014 CrossRef  Google Scholar  PubMed 
  135. Wilson, S.M., Lam, D., Babiak, M.C., Perry, D.W., Shih, T., Hess, C.P., & Chang, E.F. (2015). Transient aphasias after left hemisphere resective surgery. Journal of Neurosurgery, 862, 1–13. https://doi.org/10.3171/2015.4.JNS141962 Google Scholar 
  136. Yang, M., Li, J., Li, Y., Li, R., Pang, Y., Yao, D., & Chen, H. (2016). Altered intrinsic regional activity and interregional functional connectivity in post-stroke aphasia. Scientific Reports, 6, 24803. https://doi.org/10.1038/srep24803 CrossRef  Google Scholar  PubMed 
  137. Zhu, D., Chang, J., Freeman, S., Tan, Z., Xiao, J., Gao, Y., & Kong, J. (2014). Changes of functional connectivity in the left frontoparietal network following aphasic stroke. Frontiers in Behavioral Neuroscience, 8, 167. https://doi.org/10.3389/fnbeh.2014.00167 CrossRef  Google Scholar  PubMed 
  138. Zurif, E.B., Caramazza, A., & Meyerson, R. (1972). Grammatical judgements of agrammatic aphasics. Neuropsychologia, 10, 405–417. CrossRef  Google Scholar  PubMed 
Fifty Years of Prefrontal Cortex Research: Impact on Assessment
  • Paul W. Burgess | Institute of Cognitive Neuroscience, University College London
  • Donald T. Stuss | University of Toronto, Toronto, Ontario Canada, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada, Rotman Research Institute of Baycrest, Toronto, Ontario, Canada

E-mail address | donaldt@stussassoc.ca

There are no conflicts of interest in relation to this manuscript. This study is a review of past literature, and there are no sources of financial support.


Our knowledge of the functions of the prefrontal cortex, often called executive, supervisory, or control, has been transformed over the past 50 years. After operationallydefining terms for clarification, we review the impact of advances in functional, structural, and theoretical levels of understanding upon neuropsychological assessmentpractice as a means of identifying 11 principles/challenges relating to assessment of executive function. Three of these were already known 50 years ago, and 8 havebeen confirmed or emerged since. Key themes over this period have been the emergence of the use of naturalistic tests to address issues of “ecological validity”; discoveryof the complexity of the frontal lobe control system; invention of new tests for clinical use; development of key theoretical frameworks that address the issue ofthe role of prefrontal cortex systems in the organization of human cognition; the move toward considering brain systems rather than brain regions; the advent of functionalneuroimaging, and its emerging integration into clinical practice. Despite these huge advances, however, practicing neuropsychologists are still desperately in needof new ways of measuring executive function. We discuss pathways by which this might happen, including decoupling the two levels of explanation (information processing;brain structure) and integrating very recent technological advances into the neuropsychologist’s toolbox. (JINS, 2017, 23,755–767)

  1. Alexander, G.E., DeLong, M.R., & Strick, P.I. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381. CrossRef  Google Scholar  PubMed 
  2. Alexander, M.P., Stuss, D.T., Picton, T., Shallice, T., & Gillingham, S. (2007). Regional frontal injuries cause distinct impairments in cognitive control. Neurology, 68, 1515–1523. CrossRef  Google Scholar  PubMed 
  3. Alexander, M.P., Stuss, D.T., & Fansabedian, N. (2003). California verbal learning test: Performance by patients with focal frontal and non-frontal lesions. Brain, 126, 1493–1503. CrossRef  Google Scholar  PubMed 
  4. Alexander, M.P., Stuss, D.T., Shallice, T., Picton, T.W., & Gillingham, S. (2005). Impaired concentration due to frontal lobe damage from two distinct lesion sites. Neurology, 65, 572–579. CrossRef  Google Scholar  PubMed 
  5. Anderson, C.V., Bigler, E.D., & Blatter, D.D. (1995). Frontal lobe lesions, diffuse damage, and neuropsychological functioning in traumatic brain-injured patients. Journal of Clinical and Experimental Neuropsychology, 17(6), 900–908. CrossRef  Google Scholar  PubMed 
  6. Baddeley, A.D. (1986). Working memory. Oxford: Clarendon Press. Google Scholar  PubMed 
  7. Baddeley, A., Della Sala, S., Papagno, C., & Spinnler, H. (1997). Dual-task performance in dysexecutive and nondysexecutive patients with a frontal lesion. Neuropsychology, 11, 187–194. CrossRef  Google Scholar  PubMed 
  8. Badre, D. (2008). Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12, 193–200. doi: 10.1016/j.tics.2008.02.004 CrossRef  Google Scholar  PubMed 
  9. Bechara, A., Damasio, H., Tranel, D., & Damasio, A.R. (2005). The Iowa Gambling Task and the somatic marker hypothesis: Some questions and answers. Trends in Cognitive Sciences, 9, 159–162. CrossRef  Google Scholar  PubMed 
  10. Benoit, R.G., Gilbert, S.J., Volle, E., & Burgess, P.W. (2010). When I think about me and simulate you: Medial rostral prefrontal cortex and self-referential processes. NeuroImage, 50, 1340–1349. CrossRef  Google Scholar  PubMed 
  11. Benton, A.L. (1991). The prefrontal region: Its early history. In H.S. Levin, H.M. Eisenberg & A.L. Benton (Eds.), Frontal lobe function and dysfunction (pp 3–34). New York: Oxford University Press. Google Scholar 
  12. Burgess, P.W. (1997). Theory and methodology in executive function research. In P. Rabbitt (Ed.), Methodology of frontal and executive function (pp 81–116). Hove, UK: Psychology Press. Google Scholar  PubMed 
  13. Burgess, P.W., Alderman, N., Evans, J., Emslie, H., & Wilson, B.A. (1998). The ecological validity of tests of executive function. Journal of the International Neuropsychological Society, 4, 547–558. CrossRef  Google Scholar  PubMed 
  14. Burgess, P.W., Alderman, N., Volle, E., Benoit, R.G., & Gilbert, S.J. (2009). Mesulam’s frontal lobe mystery re-examined. Restorative Neurology and Neuroscience, 27, 493–506. Google Scholar  PubMed 
  15. Burgess, P.W., Alderman, N., Forbes, C., Costello, A., Coates, L., Dawson, D.R., & Channon, S. (2006). The case for the development and use of “ecologically valid” measures of executive function in experimental and clinical neuropsychology. Journal of the International Neuropsychological Society, 12, 1–16. CrossRef  Google Scholar  PubMed 
  16. Burgess, P.W., Dumontheil, I., & Gilbert, S.J. (2007). The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends in Cognitive Sciences, 11, 290–298. CrossRef  Google Scholar  PubMed 
  17. Burgess, P.W., Gonen-Yaacovi, G., & Volle, E. (2011). Functional neuroimaging studies of prospective memory: What have we learnt so far? Neuropsychologia, 49, 2246–2257. CrossRef  Google Scholar  PubMed 
  18. Burgess, P.W., Gonen-Yaacovi, G., & Volle, E. (2012). Rostral prefrontal cortex: What neuroimaging can learn from human neuropsychology. In B. Levine & F.I.M. Craik (Eds.), Mind and the frontal lobes: Cognition, behavior, and brain imaging (pp. 47–92). New York: Oxford University Press. Google Scholar 
  19. Burgess, P.W., & Shallice, T. (1996a). Bizarre responses, rule detection and frontal lobe lesions. Cortex, 32, 241–259. CrossRef  Google Scholar  PubMed 
  20. Burgess, P.W., & Shallice, T. (1996b). Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia, 34, 263–273. CrossRef  Google Scholar  PubMed 
  21. Burgess, P.W., & Shallice, T. (1997). The Hayling and Brixton tests. Bury St. Edmunds, UK: Thames Valley Test Company. Google Scholar 
  22. Burgess, P.W., Veitch, E., Costello, A., and Shallice, T. (2000). The cognitive and neuroanatomical correlates of multitasking. Neuropsychologia, 38, 848–863. CrossRef  Google Scholar  PubMed 
  23. Burgess, P.W., & Wu, H.-C. (2013). Rostral prefrontal cortex (Brodmann Area 10): Metacognition in the brain. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (2nd ed., pp. 524–544). New York: Oxford University Press. Google Scholar 
  24. Catani, C., Dell’Acqua, F., Bizzi, A., Forkel, S.J., Williams, S.C., Simmons, A., Murphy, D.G., & Thiebaut de Schotten, M. (2012). Beyond cortical localization in clinico-anatomical correlation. Cortex, 48, 1262–1287. CrossRef  Google Scholar  PubMed 
  25. Channon, S. (2004). Frontal lobe dysfunction and everyday problem-solving: Social and non-social contributions. Acta Psychologica, 115(2-3), 235–254. CrossRef  Google Scholar  PubMed 
  26. Christensen, A.-L. (1975). Luria’s neuropsychological investigation. New York: Spectrum Publications. Google Scholar 
  27. Cicerone, K., Levin, H., Malec, J., Stuss, D., & Whyte, J. (2006). Cognitive rehabilitation interventions for executive function: Moving from bench to bedside in patients with traumatic brain injury. Journal of Cognitive Neuroscience, 18, 1212–1222. CrossRef  Google Scholar  PubMed 
  28. Clark, l, Cools, R., & Robbins, T.W. (2004). The neuropsychology of ventral prefrontal cortex: Decision-making and reversal learning. Brain and Cognition, 55, 41–53. CrossRef  Google Scholar  PubMed 
  29. Craik, F.I.M., Moroz, T.M., Moscovitch, M., Stuss, D.T., Winocur, G., Tulving, E., & Kapur, S. (1999). In search of the self: A positron emission tomography study. Psychological Science, 10, 26–34. CrossRef  Google Scholar 
  30. Cummings, J.L. (1995). Anatomic and behavioral aspects of frontal-subcortical circuits. In J. Grafman, K.J. Holyoak & F. Boller (Eds.), Structure and functions of the human prefrontal cortex, Vol. 769, pp. 1–13). New York: New York Academy of Sciences. Google Scholar 
  31. Damasio, A.R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 351, 1413–1420. CrossRef  Google Scholar  PubMed 
  32. Dawson, D.R., Anderson, N.D., Burgess, P.W., Cooper, E., Krpan, K.M., & Stuss, D.T. (2009). Further development of the multiple errands test: Standardized scoring, reliability, and ecological validity for the Baycrest version. Archives of Physical Medicine and Rehabilitation, 90(S1), 41–51. CrossRef  Google Scholar  PubMed 
  33. Demakis, G.J. (2004). Frontal lobe damage and tests of executive processing: A meta-analysis of the category test, Stroop test, and trail-making test. Journal of Clinical and Experimental Neuropsychology, 26, 441–450. CrossRef  Google Scholar  PubMed 
  34. D’Esposito, M., & Badre, D. (2012). Combining the insights derived from lesion and fMRI studies to understand the function of prefrontal cortex. In B. Levine & F.I.M. Craik (Eds.), Mind and the frontal lobes. Cognition, behavior, and brain imaging (pp. 93–108). Oxford/New York: Oxford University Press. Google Scholar 
  35. Dubois, B., Slachevsky, A., Litvan, I., & Pillon, B. (2000). The FAB: A frontal assessment battery at bedside. Neurology, 55, 1621–1626. CrossRef  Google Scholar  PubMed 
  36. Duncan, J., & Miller, E.K. (2013). Adaptive neural coding in frontal and parietal cortex. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (2nd ed., pp. 292–301). New York: Oxford University Press. Google Scholar 
  37. Duncan, J., & Owen, A.M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23, 475–483. CrossRef  Google Scholar  PubMed 
  38. Duncan, J., Parr, A., Woolgar, A., Thompson, R., Bright, P., Cox, S., & Nimmo-Smith, I. (2008). Goal neglect and Spearman’s g: Competing parts of a complex task. Journal of Experimental Psychology: General, 137, 131–148. CrossRef  Google Scholar 
  39. Eslinger, P.J., & Damasio, A.R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation. Neurology, 35(12), 1731–1741. CrossRef  Google Scholar  PubMed 
  40. Fellows, L.K., & Farah, M.J. (2005). Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cerebral Cortex, 15, 58–63. CrossRef  Google Scholar  PubMed 
  41. Floden, D., Alexander, M.P., Kubu, C., Katz, D., & Stuss, D.T. (2008). Impulsivity and risk-taking behavior in focal frontal lobe lesions. Neuropsychologia, 46, 213–223. CrossRef  Google Scholar  PubMed 
  42. Floden, D., Vallesi, A., & Stuss, D.T. (2011). Task context and frontal lobe activation in the Stroop task. Journal of Cognitive Neuroscience, 23, 867–879. CrossRef  Google Scholar  PubMed 
  43. Gilbert, S.J., Spengler, S., Simons, J.S.S., Steele, J.D., Lawrie, S.M., Frith, C.D., & Burgess, P.W. (2006). Functional specialisation within rostral prefrontal cortex (area 10): A meta-analysis. Journal of Cognitive Neuroscience, 18(6), 932–948. CrossRef  Google Scholar  PubMed 
  44. Gilbert, S.J., Gollwitzer, P.M., Cohen, A.L., Oettingen, G., & Burgess, P.W. (2009). Separable brain systems supporting cued versus self-initiated realization of delayed intentions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 905–915. Google Scholar  PubMed 
  45. Gilbert, S.J., Gonen-Yaacovi, G., Benoit, R.G., Volle, E., & Burgess, P.W. (2010). Distinct functional connectivity associated with lateral versus medial rostral prefrontal cortex: A meta-analysis. NeuroImage, 53, 1359–1367. CrossRef  Google Scholar  PubMed 
  46. Gioia, G.A., Isquith, P.K., Guy, S.C., & Kenworthy, L. (2000). Behavior rating inventory of executive function. Child Neuropsychology, 6, 235–238. doi: 10.1076/chin. CrossRef  Google Scholar 
  47. Gonen-Yaacovi, G., & Burgess, P.W. (2012). Prospective memory: The future for future intentions. Psychologica Belgica, 173(52/2-3), 173–204. Google Scholar 
  48. Grace, J., & Malloy, P.F. (2001). Frontal Systems Behavior Scale (FrSBe). Lutz, FL: PAR. Google Scholar 
  49. Gratton, C., Nomura, E.M., Perez, F., & D’Esposito, M. (2012). Focal brain lesions to critical locations cause widespread disruption of the modular organization of the brain. Journal of Cognitive Neuroscience, 24, 1276–1285. CrossRef  Google Scholar 
  50. Halstead, W.C. (1947). Brain and intelligence: A quantitative study of the frontal lobes. Chicago: University of Chicago Press. Google Scholar 
  51. Harlow, J.M. (1848). Passage of an iron bar through the head. Boston Medical and Surgical Journal, 39, 389–393. Google Scholar 
  52. Helfrich, R.F., & Knight, R.T. (2016). Oscillatory dynamics of prefrontal cognitive control. Trends in Cognitive Science, 20, 916–930. CrossRef  Google Scholar  PubMed 
  53. Hwang, K., Bertolero, M., Liu, W., & D’Esposito, M. (2017). The human thalamus is an integrative hub for functional brain networks. Journal of Neuroscience, 37, 5594–5607. CrossRef  Google Scholar  PubMed 
  54. Knight, C., Alderman, N., & Burgess, P.W. (2002). Development of a simplified version of the multiple errands test for use in hospital settings. Neuropsychological Rehabilitation, 12, 231–255. CrossRef  Google Scholar 
  55. Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302, 1181–1185. CrossRef  Google Scholar  PubMed 
  56. Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Science, 11, 229–235. CrossRef  Google Scholar  PubMed 
  57. Levine, B., Robertson, I.H., Clare, L., Carter, G., Hong, J., Wilson, B.A., & Stuss, D.T. (2000). Rehabilitation of executive functioning: An experimental-clinical validation of Goal Management Training. Journal of the International Neuropsychological Society, 6, 299–312. CrossRef  Google Scholar  PubMed 
  58. Luria, A.R. (1966). Higher cortical functions in man (2nd ed.). New York: Basic Books. Google Scholar 
  59. Manly, T., Hawkins, K., Evans, J., Woldt, K., & Robertson, I.H. (2002). Rehabilitation of executive function: Facilitation of effective goal management on complex tasks using periodic auditory alerts. Neuropsychologia, 40(3), 271–281. CrossRef  Google Scholar  PubMed 
  60. Milner, B. (1963). Effects of different brain lesions on card sorting: The role of the frontal lobes. Archives of Neurology, 9, 90–100. CrossRef  Google Scholar 
  61. Norman, D.A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R.J. Davidson, G.E. Schwartz & D. Shapiro (Eds.), Consciousness and self-regulation: Advances in research. (Vol. IV, pp. 1–18). New York: Plenum Press. Google Scholar 
  62. Pandya, D.N., & Barnes, C.L. (1987). Architecture and connections of the frontal lobe. In E. Perecman (Ed.), The frontal lobes revisited (pp. 41–72). New York: IRBN Press. Google Scholar 
  63. Pandya, D.N., & Yeterian, E.H. (1996). Morphological correlations of human and monkey frontal lobes. In A.R. Damasio, H. Damasio & Y. Christen (Eds.), Neurobiology of decision making (pp. 13–46). New York: Springer-Verlag. CrossRef  Google Scholar 
  64. Petrides, M. (2013). The mid-dorsolateral prefronto-parietal network and the epoptic process. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (2nd ed., pp. 79–89). New York: Oxford University Press. Google Scholar 
  65. Perrine, K. (1993). Differential aspects of conceptual processing in the Category Test and Wisconsin Card Sorting Test. Journal of Clinical and Experimental Neuropsychology Section A: Neuropsychology, Development, and Cognition, 15, 461–473. CrossRef  Google Scholar  PubMed 
  66. Picton, T.W., Stuss, D.T., Alexander, M.P., Shallice, T., Binns, M.A., & Gillingham, S. (2007). Effects of focal frontal lesions on response inhibition. Cerebral Cortex, 17, 826–838. CrossRef  Google Scholar  PubMed 
  67. Picton, T.W., Stuss, D.T., Shallice, T., Alexander, M.P., & Gillingham, S. (2006). Keeping time: Effects of focal frontal lesions. Neuropsychologia, 44, 1195–1209. CrossRef  Google Scholar  PubMed 
  68. Pinti, P., Aichelburg, C., Lind, F., Power, C., Swingler, E., Merla, A., & Tachtsidis, I. (2015). Using fibreless, wearable fNIRS to monitor brain activity in real-world cognitive tasks. Journal of Visualised Experiments, 106, e53336. doi: 10.3791/53336 Google Scholar 
  69. Pribram, K.H. (1973). The primate frontal cortex-executive of the brain. In K.H. Pribram & A.R. Luria (Eds.), Psychophysiology of the Frontal Lobes (pp. 293–314). New York: Academic Press. CrossRef  Google Scholar 
  70. Raichle, M.E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433–447. doi: 10.1146/annurev-neuro-071013-014030 CrossRef  Google Scholar  PubMed 
  71. Reitan, R.M. (1958). Validity of the trail making test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271–276. CrossRef  Google Scholar 
  72. Reitan, R.M., & Wolfson, D. (1995). Category test and trail making test as measures of frontal lobe functions. The Clinical Neuropsychologist, 9, 50–56. CrossRef  Google Scholar 
  73. Reverberi, C., Lavaroni, A., Giglib, G.L., & Skrapb, M. (2005). Specific impairments of rule induction in different frontal lobe subgroups. Neuropsychologia, 43, 460–472. CrossRef  Google Scholar  PubMed 
  74. Szczepanski, S.M., & Knight, R.T. (2014). Insights into human behavior from lesions to the prefrontal cortex. Neuron, 83, 1002–1018. CrossRef  Google Scholar  PubMed 
  75. Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society B: Biological Sciences, 298, 199–209. CrossRef  Google Scholar  PubMed 
  76. Shallice, T., & Burgess, P.W. (1991). Deficits in strategy application following frontal lobe damage in man. Brain, 114, 727–741. CrossRef  Google Scholar  PubMed 
  77. Shallice, T., & Burgess, P.W. (1996). The domain of supervisory processes and temporal organisation of behaviour. Philosophical Transactions of the Royal Society of London B, 351, 1405–1412. CrossRef  Google Scholar  PubMed 
  78. Shallice, T., & Cooper, R. (2011). The organisation of mind. Oxford, UK: Oxford University Press. CrossRef  Google Scholar 
  79. Shallice, T., & Evans, M.E. (1978). The involvement of the frontal lobes in cognitive estimation. Cortex, 14, 294–303. CrossRef  Google Scholar  PubMed 
  80. Shallice, T., Stuss, D.T., Alexander, M.P., Picton, T.W., & Derkzen, D. (2008). The multiple dimensions of sustained attention. Cortex, 44, 794–805. CrossRef  Google Scholar  PubMed 
  81. Shallice, T., Stuss, D.T., Picton, T.W., Alexander, M.P., & Gillingham, S. (2008). Multiple effects of prefrontal lesions on task-switching. Frontiers in Human Neuroscience, 1, 1–12. Google Scholar  PubMed 
  82. Shammi, P., & Stuss, D.T. (1999). Humour appreciation: A role of the right frontal lobe. Brain, 122, 657–666. CrossRef  Google Scholar  PubMed 
  83. Spitzer, D., White, S., Mandy, W., & Burgess, P.W. (2016). Confabulation in children with autism. Cortex, 87, 80–95. CrossRef  Google Scholar  PubMed 
  84. Stuss, D.T. (2007). New approaches to prefrontal lobe testing. In B. Miller & J. Cummings (Eds.), The human frontal lobes: Functions and disorders (2nd ed., pp. 292–305). New York: Guilford Press. Google Scholar 
  85. Stuss, D.T. (2011a). Functions of the frontal lobes: Relation to executive functions. Journal of the International Neuropsychological Society, 17, 1–7. CrossRef  Google Scholar  PubMed 
  86. Stuss, D.T. (2011b). Traumatic brain injury: Relation to executive dysfunction and the frontal lobes. Current Opinion in Neurology, 24, 584–589. CrossRef  Google Scholar  PubMed 
  87. Stuss, D.T., & Alexander, M.P. (2007). Is there a dysexecutive syndrome? Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 362, 901–915. Google Scholar 
  88. Stuss, D.T., Alexander, M.P., Shallice, T., Picton, T.W., Binns, M.A., MacDonald, R., & Katz, D.I. (2005). Multiple frontal systems controlling response speed. Neuropsychologia, 43, 396–417. CrossRef  Google Scholar  PubMed 
  89. Stuss, D.T., Alexander, M.P., Hamer, L., Palumbo, C., Dempster, R., Binns, M., & Izukawa, D. (1998). The effects of focal anterior and posterior brain lesions on verbal fluency. Journal of the International Neuropsychological Society, 4, 265–278. Google Scholar  PubMed 
  90. Stuss, D.T., & Benson, D.F. (1983). Emotional concomitants of psychosurgery. In K.M. Heilman & P. Satz (Eds.), Advances in neuropsychology and behavioral neurology. Vol. 1. Neuropsychology of human emotion (pp. 111–140). New York/London: The Guilford Press. Google Scholar 
  91. Stuss, D.T., & Benson, D.F. (1986). The frontal lobes. New York: Raven Press. Google Scholar  PubMed 
  92. Stuss, D.T., Binns, M.A., Murphy, K.J., & Alexander, M.P. (2002). Dissociations within the anterior attentional system: Effects of task complexity and irrelevant information on reaction time speed and accuracy. Neuropsychology, 16, 500–513. CrossRef  Google Scholar  PubMed 
  93. Stuss, D.T., Bisschop, S.M., Alexander, M.P., Levine, B., Katz, D., & Izukawa, D. (2001a). The Trail Making Test: A study in focal lesion patients. Psychological Assessment, 13, 230–239. CrossRef  Google Scholar  PubMed 
  94. Stuss, D.T., Floden, D., Alexander, M.P., Levine, B., & Katz, D. (2001b). Stroop performance in focal lesion patients: Dissociation of processes and frontal lobe lesion location. Neuropsychologia, 39, 771–786. CrossRef  Google Scholar  PubMed 
  95. Stuss, D.T., Gallup, G.G., & Alexander, M.P. (2001). The frontal lobes are necessary for “theory of mind”. Brain, 124, 279–286. CrossRef  Google Scholar 
  96. Stuss, D.T., Levine, B., Alexander, M.P., Hong, J., Palumbo, C., Hamer, L., & Izukawa, D. (2000). Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: Effects of lesion location and test structure on separable cognitive processes. Neuropsychologia, 38, 388–402. CrossRef  Google Scholar  PubMed 
  97. Stuss, D.T., Kaplan, E.F., Benson, D.F., Weir, W.S., Naeser, M.A., & Levine, H.L. (1981). Long-term effects of prefrontal leucotomy- An overview of neuropsychologic residuals. Journal of Clinical Neuropsychology, 3, 13–32. CrossRef  Google Scholar  PubMed 
  98. Stuss, D.T., & Knight, R.T. (Eds.). (2002). Principles of frontal lobe function. New York: Oxford University Press. CrossRef  Google Scholar 
  99. Stuss, D.T., & Knight, R.T. (Eds.). (2013). Principles of frontal lobe function (2nd ed). New York: Oxford University Press. CrossRef  Google Scholar 
  100. Stuss, D.T., Murphy, K.J., Binns, M.A., & Alexander, M.P. (2003). Staying on the job: The frontal lobes control individual performance variability. Brain, 126, 2363–2380. CrossRef  Google Scholar  PubMed 
  101. Stuss, D.T., Shallice, T., Alexander, M.P., & Picton, T.W. (1995). A multidisciplinary approach to anterior attentional functions. Annals of the New York Academy of Sciences, 769, 191–212. CrossRef  Google Scholar  PubMed 
  102. Teuber, H.L. (1972). Unity and diversity of frontal lobe functions. Acta Neurobiologiae Experimentalis (Wars), 32, 615–656. Google Scholar  PubMed 
  103. Thiebaut de Schotten, M., Urbanski, M., Batrancourt, B., Levy, R., Dubois, B., Cerliani, L., & Volle, E. (2017). Rostro-caudal architecture of the frontal lobes in humans. Cerebral Cortex, 27, 4033–4047. Google Scholar  PubMed 
  104. Thurstone, L.L., & Thurstone, T.G. (1938). Primary mental abilities. Chicago: University of Chicago Press. Google Scholar  PubMed 
  105. Tilney, F. (1928). The brain, from ape to man. New York: Hoeber. Google Scholar 
  106. Vallesi, A., McIntosh, A.R., Alexander, M.P., & Stuss, D.T. (2009). fMRI evidence of a functional network setting the criteria for withholding a response. NeuroImage, 45, 537–548. CrossRef  Google Scholar  PubMed 
  107. Vallesi, A., McIntosh, A.R., Crescentini, C., & Stuss, D.T. (2012). fMRI investigation of speed-accuracy strategy switching. Human Brain Mapping, 33, 1677–1688. CrossRef  Google Scholar  PubMed 
  108. Vallesi, A., McIntosh, A.R., Shallice, T., & Stuss, D.T. (2009). When time shapes behavior: fMRI evidence of brain correlates of temporal monitoring. Journal of Cognitive Neuroscience, 21, 1116–1126. CrossRef  Google Scholar  PubMed 
  109. Volle, E., Costello, A., De L. Coates, L.M., Forbes, C., Towgood, K., Gilbert, S.J., & Burgess, P.W. (2012). Dissociation between verbal response initiation and suppression after prefrontal lesions. Cerebral Cortex, 22, 2428–2440. doi: 10.1093/cercor/bhr322 CrossRef  Google Scholar  PubMed 
  110. Warrington, E.K. (2000). Homophone meaning generation: A new test of verbal switching for the detection of frontal lobe dysfunction. Journal of the International Neuropsychological Society, 6, 643–648. CrossRef  Google Scholar  PubMed 
  111. Wheeler, M.A., Stuss, D.T., & Tulving, E. (1997). Toward a theory of episodic memory: The frontal lobes and autonoetic consciousness. Psychological Bulletin, 121, 331–354. CrossRef  Google Scholar 
  112. Wilson, B.A., Evans, J.J., Emslie, H., Alderman, N., & Burgess, P.W. (1998). The development of an ecologically valid test for assessing patients with a dysexecutive syndrome. Neuropsychological Rehabilitation, 8, 213–228. CrossRef  Google Scholar 
The Neuropsychology of Movement and Movement Disorders: Neuroanatomical and Cognitive Considerations
  • Kathleen Y. Haaland | Departments of Psychiatry & Behavioral Sciences and Neurology, University of New Mexico, Albuquerque, New Mexico
  • Richard P. Dum | University of Pittsburgh Brain Institute, Systems Neuroscience Institute, Center for the Neural Basis of Cognition, and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
  • Pratik K. Mutha | Department of Biological Engineering and Center for Cognitive Science, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, India
  • Peter L. Strick | University of Pittsburgh Brain Institute, Systems Neuroscience Institute, Center for the Neural Basis of Cognition, and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
  • Alexander I. Tröster | Department of Clinical Neuropsychology and Center for Neuromodulation, Barrow Neurological Institute, Phoenix, Arizona

E-mail address | khaaland@unm.edu

None of the authors have any conflicts of interest.


This paper highlights major developments over the past two to three decades in the neuropsychology of movement and its disorders. We focus on studies in healthy individualsand patients, which have identified cognitive contributions to movement control and animal work that has delineated the neural circuitry that makes these interactionspossible. We cover advances in three major areas: (1) the neuroanatomical aspects of the “motor” system with an emphasis on multiple parallel circuits that includecortical, corticostriate, and corticocerebellar connections; (2) behavioral paradigms that have enabled an appreciation of the cognitive influences on the preparationand execution of movement; and (3) hemispheric differences (exemplified by limb praxis, motor sequencing, and motor learning). Finally, we discuss the clinical implicationsof this work, and make suggestions for future research in this area. (JINS, 2017, 23, 768–777)

  1. Aflalo, T., Kellis, S., Klaes, C., Lee, B., Shi, Y., Pejsa, K., & Andersen, R.A. (2015). Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science, 348, 906–910. CrossRef  Google Scholar  PubMed 
  2. Amiez, C., & Petrides, M. (2014). Neuroimaging evidence of the anatomo-functional organization of the human cingulate motor areas. Cerebral Cortex, 24(3), 563–578. CrossRef  Google Scholar  PubMed 
  3. Ashby, F.G., Alfonso-Reese, L.A., Turken, A.U., & Waldron, E.M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological Review, 105(3), 442–481. CrossRef  Google Scholar  PubMed 
  4. Bi, Y., Han, Z., Zhong, S., Ma, Y., Gong, G., Huang, R., & Caramazza, A. (2015). The white matter structural network underlying human tool use and tool understanding. Journal of Neuroscience, 35(17), 6822–6835. doi: 10.1523/JNEUROSCI.3709-14.2015 CrossRef  Google Scholar  PubMed 
  5. Boecker, H., Jankowski, J., Ditter, P., & Scheef, L. (2008). A role of the basal ganglia and midbrain nuclei for initiation of motor sequences, NeuroImage, 39, 1356–1369. doi: 10.1016/j.neuroimage.2007.09.069 CrossRef  Google Scholar  PubMed 
  6. Borchert, R.J., Rittman, T., Passamonti, L., Ye, Z., Sarni, S., Jones, S.P., & Rowe, J.B. (2016). Atomoxetine enhances connectivity of prefrontal networks in Parkinson’s Disease. Neuropsychopharmacology, 41, 2171–2177. CrossRef  Google Scholar  PubMed 
  7. Buccino, G., Vogt, S., Ritzl, A., Fink, G.R., Zilles, K., Freund, H.J., & Rizzolatti, G. (2004). Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron, 42(2), 323–334. CrossRef  Google Scholar 
  8. Buneo, C.A., & Andersen, R.A. (2006). The posterior parietal cortex: Sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia, 44, 2594–2606. CrossRef  Google Scholar  PubMed 
  9. Buxbaum, L.J., Haaland, K.Y., Hallett, M., Wheaton, L., Heilman, K.M., Rodriguez, A., & Gonzalez Rothi, L.J. (2008). Treatment of limb apraxia: Moving forward to improved action. American Journal of Physical Medicine & Rehabilitation, 87, 149–161. doi: 10.1097/PHM.0b013e31815e6727 CrossRef  Google Scholar  PubMed 
  10. Buxbaum, L.J., Johnson-Frey, S.H., & Bartlett-Willians, M. (2005). Deficient internal models for planning hand-object interactions in apraxia. Neuropsychologia, 43(6), 917–929. doi: 10.1016/j.neuropsychologia.2004.09.006 CrossRef  Google Scholar  PubMed 
  11. Buxbaum, L.J., & Solenine, L. (2010). Action knowledge, visuomotor activation, and embodiment n the two action systems. Annals of the New York Academy of Sciences, 1191, 201–218. doi: 10.1111/j.1749-6632.2010.05447.x CrossRef  Google Scholar  PubMed 
  12. Canessa, N., Borgo, F., Cappa, S.F., Perani, D., Falini, A., Buccino, G., & Shallice, T. The different neural correlates of action and functional knowledge in semantic memory: An fMRI study. 2008). Cerebral Cortex, 18, 740–751. doi: 10.1093/cercor/bhm110 CrossRef  Google Scholar  PubMed 
  13. Caspers, S., Zilles, K., Laird, A.R., & Eickhoff, S.B. (2009). ALE meta-analysis of action observation and imitation in the human brain. Neuroimage, 50(3), 1148–1167. CrossRef  Google Scholar  PubMed 
  14. Celnik, P. (2015). Understanding and modulating motor learning with cerebellar stimulation. Cerebellum, 14(2), 171–174. CrossRef  Google Scholar  PubMed 
  15. Della-Maggiore, V., Malfait, N., Ostry, D.J., & Paus, T. (2004). Stimulation of the Posterior Parietal Cortex Interferes with Arm Trajectory Adjustments during the Learning of New Dynamics. The Journal of Neuroscience, 24(44), 9971–9976. doi: 10.1523/JNEUROSCI.2833-04.2004 CrossRef  Google Scholar  PubMed 
  16. Delong, M.R., & Wichmann, T. Basal Ganglia Circuits as Targets for Neuromodulation in Parkinson Disease. (2015). JAMA Neurology, 72(11), 1354–1360. doi: 10.1001/jamaneurol.2015.2397 CrossRef  Google Scholar  PubMed 
  17. DiRienzo, F., Debarnot, U., Daligault, S., Saruco, E., Delpuech, C., Doyon, J., & Guillot, A. (2016). Online and offline performance gains following motor imagery practice: A comprehensive review of behavioral and neuroimaging studies. Frontiers in Human Neuroscience, 10, 1–15. doi: 10.3389/fnhum.2016.00315 Google Scholar 
  18. Doyon, J. (2008). Motor sequence learning and movement disorders. Current Opinion in Neurology, 21, 478–483. CrossRef  Google Scholar  PubMed 
  19. Doyon, J., & Benali, H. (2005). Reorganization and plasticity in the adult brain during learning of motor skills. Current Opinion in Neurobiology, 15, 161–167. CrossRef  Google Scholar  PubMed 
  20. Dum, R.P., & Strick, P.L. (1991). The origin of corticospinal projections from the premotor areas in the frontal lobe. Journal of Neuroscience, 11, 667–689. Google Scholar  PubMed 
  21. Dum, R.P., & Strick, P.L. (2005). Motor areas in the frontal lobe: The anatomical substrate for the central control of movement. In A. Riehle & E. Vaadia (Eds.), Motor cortex in voluntary movements (pp. 3–47). Boca Raton, FL: CRC Press LLC. Google Scholar 
  22. Dum, R.P., Leventhal, D.J., & Strick, P.L. (2016). Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla. Proceedings of the National Academy of Sciences of the United States of America, 113, 9922–9927. CrossRef  Google Scholar  PubMed 
  23. Elsinger, C.L., Harrington, D.L., & Rao, S.M. (2006). Reappraisal of neural circuitry mediating internally generated and externally guided actions. NeuroImage, 31, 1177–1187. CrossRef  Google Scholar  PubMed 
  24. Foerde, K., & Shohamy, D. (2011). The role of the basal ganglia in learning and memory: Insight from Parkinson’s disease. Neurobiology of Learning and Memory, 96(4), 624–636. doi: 10.1016/j.nlm.2011.08.006 CrossRef  Google Scholar  PubMed 
  25. Frank, M.J., Seeberger, L.C., & O’Reilly, R.C. (2004). By carrot or by stick: Cognitive reinforcement learning in parkinsonism. Science, 306, 1940–1943. doi: 10.1126/science.1102941 CrossRef  Google Scholar  PubMed 
  26. Fridman, E.A., Immisch, I., Hanakawa, T., Bohlhalter, S., Waldvogel, D., Kasaku, K., & Hallett, M. (2006). The role of the dorsal stream for gesture production. NeuroImage, 29, 417–428. CrossRef  Google Scholar  PubMed 
  27. Genon, S., Li, H., Fan, L., Müller, V.I., Cieslik, E.C., Hoffstaedter, F., & Eickhoff, S.B. (2017). The right dorsal premotor mosaic: Organization, functions, and connectivity. Cerebral Cortex, 27, 2095–2110. Google Scholar  PubMed 
  28. Glover, S., Wall, M.B., & Smith, A.T. (2012). Distinct cortical networks support the planning and online control of reaching-to-grasp in humans. European Journal of Neuroscience, 35, 909–915. CrossRef  Google Scholar  PubMed 
  29. Goldenberg, G. (2009). Apraxia and the parietal lobes. Neuropsychologia, 47(6), 1449–1459. CrossRef  Google Scholar 
  30. Griffin, D.M., Hoffman, D.S., & Strick, P.L. (2015). Corticomotoneuronal cells are “functionally tuned”. Science, 350(6261), 667–670. CrossRef  Google Scholar 
  31. Haaland, K.Y. (2006). Left hemisphere dominance for movement. The Clinical Neuropsychologist, 20, 609–622. CrossRef  Google Scholar  PubMed 
  32. Haaland, K.Y., Elsinger, C., Mayer, A., Durgerian, S., & Rao, S. (2004). Motor sequence complexity and performing hand produce differential patterns of hemispheric lateralization. Journal of Cognitive Neuroscience, 16, 621–636. CrossRef  Google Scholar  PubMed 
  33. Haaland, K.Y., Harrington, D.L., & Knight, R.T. (2000). Neural representations of skilled movement. Brain, 123, 2306–2313. CrossRef  Google Scholar  PubMed 
  34. Haber, S.N. (2014). The place of dopamine in the cortico-basal ganglia circuit. Neuroscience, 282, 248–257. CrossRef  Google Scholar  PubMed 
  35. Haith, A.M., Huberdeau, D.M., & Krakauer, J.W. (2015). The influence of movement preparation time on the expression of visuomotor learning and savings. The Journal of Neuroscience, 35(13), 5109–5117. doi: 10.1523/JNEUROSCI.3869-14.2015 CrossRef  Google Scholar  PubMed 
  36. Hamilton, J.M., Haaland, K.Y., Adair, J.C., & Brandt, J. (2003). Ideomotor limb apraxia in Huntington’s Disease: Implications for corticostriate involvement. Neuropsychologia, 41, 1–8. CrossRef  Google Scholar  PubMed 
  37. Harrington, D.L., & Haaland, K.Y. (1991b). Sequencing in Parkinson’s disease: Abnormalities in programming and controlling movement. Brain, 114, 99–115. Google Scholar  PubMed 
  38. Harrington, D.L., & Haaland, K.Y. (1991a). Hemispheric specialization: Abnormalities of motor programming. Neuropsychologia, 29, 147–163. CrossRef  Google Scholar 
  39. Harrington, D.L., Rao, S.M., Haaland, K.Y., Bobholz, J.A., Mayer, A.R., Binder, J.R., & Cox, R.W. (2000). Specialized neural systems underlying representations of motor sequencing. Journal of Cognitive Neuroscience, 12, 56–77. CrossRef  Google Scholar 
  40. Harrington, D.L., & Haaland, K.Y. (1992). Motor sequencing deficits with left hemisphere damage: Are some cognitive deficits specific to limb apraxia? Brain, 115, 857–874. CrossRef  Google Scholar  PubMed 
  41. Haslinger, B., Erhard, P., Weilke, F., Ceballos-Baumann, A.O., Bartenstein, P., Gräfin von Einsiedel, H., & Boecker, H. (2002). The role of lateral premotor–cerebellar–parietal circuits in motor sequence control: A parametric fMRI study. Cognitive Brain Research, 13, 159–168. CrossRef  Google Scholar  PubMed 
  42. Hauert, C.A. (1986). The relationship between motor function and cognition in the developmental perspective. Italian Journal of Neurological Sciences, 5, 101–107. Google Scholar  PubMed 
  43. Heilman, K.M., Rothi, L.J., & Valenstein, E. (1982). Two forms of ideomotor apraxia. Neurology, 32, 342–346. CrossRef  Google Scholar  PubMed 
  44. Hetu, S., Gregoire, M., Saimpont, A., Coll, M.-P., Eugene, F., Michon, P.-E., & Jackson, P.L. (2013). The neural network of motor imagery: An ALE meta-analysis. Neuroscience and Biobehavioral Reviews, 37, 930–949. http://dx.doi.org/10.1016/j.neubiorev.2013.03.017 CrossRef  Google Scholar  PubMed 
  45. Hickok, G. (2009). Eight problems for the mirror neuron theory of action understanding in monkeys and humans. Journal of Cognitive Neuroscience, 21, 1229–1243. CrossRef  Google Scholar  PubMed 
  46. Holl, A.K., Wilkinson, L., Tabrizi, S.J., Painold, A., & Jahanshahi, M. (2012). Probabilistic classification learning with corrective feedback is selectively impaired in early Huntington’s disease--evidence for the role of the striatum in learning with feedback. Neuropsychologia, 50(9), 2176–2186. doi: 10.1016/j.neuropsychologia.2012.05.021 CrossRef  Google Scholar 
  47. Hosp, J.A., Pekanovic, A., Rioult-Pedotti, M.S., & Luft, A.R. (2011). Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. Journal of Neuroscience, 31(7), 2481–2487. CrossRef  Google Scholar  PubMed 
  48. Huang, V.S., Haith, A., Mazzoni, P, Krakauer, J.W. (2011). Motor Learning and Savings in Adaptation Paradigms: Model-Free Memory for Successful Actions Combines with Internal Models. Neuron, 70, 787–801. CrossRef  Google Scholar  PubMed 
  49. Kalenine, S., Buxbaum, L.P., & Coslett, H.B. (2010). Critical brain regions for action recognition: Lesion symptom mapping in left hemisphere stroke. Brain, 133, 3269–3280. doi: 10.1093/brain/awq210 CrossRef  Google Scholar  PubMed 
  50. Kelly, R.M., & Strick, P.L. (2004). Macro-architecture of basal ganglia loops with the cerebral cortex: Use of rabies virus to reveal multisynaptic circuits. Progress in Brain Research, 143, 449–459. Google Scholar  PubMed 
  51. Kimura, D., & Archibald, Y. (1974). Motor functions of the left hemisphere. Brain, 97, 337–350. CrossRef  Google Scholar  PubMed 
  52. Kincses, Z.T., Johansen-Berg, H., Tomassini, V., Bosnell, R., Matthews, P.M., & Beckmann, C.F. (2008). Model-free characterization of brain functional networks for motor sequence learning using fMRI. NeuroImage, 39, 1950–1958. CrossRef  Google Scholar 
  53. Knowlton, B.J., Mangels, J.A., & Squire, L.R. (1996). A neostriatal habit learning system in humans. Science, 273(5280), 1399–1402. CrossRef  Google Scholar  PubMed 
  54. Kolb, B., & Milner, B. (1981). Performance of complex arm and facial movements after focal brain lesions. Neuropsychologia, 19, 491–503. CrossRef  Google Scholar  PubMed 
  55. Kraeutner, S.N., Keeler, L.T., & Boe, S.G. (2015). Motor imagery-based skill acquisition disrupted following rTMS of the inferior parietal lobule. Experimental Brain Research, 234, 397–407. doi: 10.1007/s00221-015-4472-9 CrossRef  Google Scholar  PubMed 
  56. Krakauer, J.W., Ghazanfar, A.A., Gomez-Marin, A., Maciver, M.A., & Poeppe, D. (2017). Neuroscience needs behavior: Correcting a reductionist bias. Neuron, 93, 480–488. CrossRef  Google Scholar  PubMed 
  57. Lefebvre, S., Dricot, L., Laloux, P., Gradkowski, W., Desfontaines, P., Evrard, F., & Vandermeeren, Y. (2015). Neural substrates underlying motor skill learning in chronic hemiparetic stroke patients. Frontiers in Human Neuroscience, 9, 1–18. doi: 10.3389/fnhum.2015.00320 CrossRef  Google Scholar  PubMed 
  58. Lefebvre, S., Dricot, L., Laloux, P., Desfountaines, P., Evrard, F., Peeters, A., & Vandermeeren, Y. (2017). Increased functional connectivity one week after motor learning and tDCS in stroke patients. Neuroscience, 340, 424–435. CrossRef  Google Scholar  PubMed 
  59. Leiguarda, R. (2001). Limb apraxia: Cortical or subcortical. NeuroImage, 14, S137–S141. CrossRef  Google Scholar  PubMed 
  60. Lemon, R.N. (2008). Descending pathways in motor control. Annual Review of Neuroscience, 31, 195–218. CrossRef  Google Scholar  PubMed 
  61. Lerner, T.N., Shilyansky, C., Davidson, T.J., Evans, K.E., Beier, K.T., Zalocusky, K.A., & Deisseroth, K. (2015). Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell, 162(3), 635–647. CrossRef  Google Scholar  PubMed 
  62. Luria, A.R. (1973). The working brain: An introduction to neuropsychology. New York: Basic Books. Google Scholar 
  63. MacDonald, A.A., Seergobin, K.N., Owen, A.M., Tamjeedi, R., Monchi, O., Ganjavi, H., & MacDonald, P.A. (2013). Differential effects of Parkinson’s disease and dopamine replacement on memory encoding and retrieval. PLoS One, 8(9), e74044. doi: 10.1371/journal.pone.0074044 CrossRef  Google Scholar  PubMed 
  64. MacDonald, P.A., MacDonald, A.A., Seergobin, K.N., Tamjeedi, R., Ganjavi, H., Provost, J.S., & Monchi, O. (2011). The effect of dopamine therapy on ventral and dorsal striatum-mediated cognition in Parkinson’s disease: Support from functional MRI. Brain, 134(Pt 5), 1447–1463. doi: 10.1093/brain/awr075 CrossRef  Google Scholar  PubMed 
  65. Martin, T.A., Keating, J.G., Goodkin, H.P., Bastian, A.J., & Thach, W.T. (1996). Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain, 119(Pt 4), 1183–1198. CrossRef  Google Scholar  PubMed 
  66. Mathar, D., Wilkinson, L., Holl, A.K., Neumann, J., Deserno, L., Villringer, A., & Horstmann, A. (2017). The role of dopamine in positive and negative prediction error utilization during incidental learning - Insights from Positron Emission Tomography, Parkinson’s disease and Huntington’ disease. Cortex, 90, 149–162. doi: 10.1016/j.cortex.2016.09.004 CrossRef  Google Scholar 
  67. McInnes, K., Friesen, C., & Boe, S. (2015). Specific brain lesions impair explicit motor imagery agility: A systematic review of the evidence. Archives of Physical Medicine and Rehabilitation, 97, 478–489. http://dx.doi.org/10.1016/j.apmr.2015.07.012 CrossRef  Google Scholar 
  68. Merchant, H., Harrington, D.L., & Meck, W.H. (2013). Neural basis of the perception and estimation of time. Annual Review of Neuroscience, 36, 313–336. doi: 10.1146/annurev-neuro-062012-170349 CrossRef  Google Scholar 
  69. Middleton, F.A., & Strick, P.L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research. Brain Research Reviews, 31(2–3), 236–250. CrossRef  Google Scholar  PubMed 
  70. Michely, J., Volz, L.J., Barbe, M.T., Hoffstaedter, F., Viswanathan, S., Timmermann, L., & Grefkes, C. (2015). Dopaminergic modulation of motor network dynamics in Parkinson’s disease. Brain, 138, 664–678. CrossRef  Google Scholar  PubMed 
  71. Muslimovic, D., Post, B., Speelman, J.D., & Schmand, B. (2007). Motor procedural learning in Parkinson’s disease. Brain, 130, 2887–2897. doi: 10.1093/brain/awm211 CrossRef  Google Scholar  PubMed 
  72. Mutha, P.K., Sainburg, R.L., & Haaland, K.Y. (2010). Deficits in ideomotor apraxia reflect impaired visuomotor transformations. Neuropsychologia, 48, 3855–3867. doi: 10.1016/j.neuropsychologia.2010.09.018 CrossRef  Google Scholar  PubMed 
  73. Mutha, P.K., Sainburg, P.I., & Haaland, K.Y. (2011). Left parietal regions are critical for adaptive visuomotor control. Journal of Neuroscience, 31(19), 6972–6981. doi: 10.1523/JNEUROSCI.6432-10.2011 CrossRef  Google Scholar  PubMed 
  74. Mutha, P.K., Stapp, L.H., Sainburg, R.L., & Haaland, K.Y. (2014). Posterior parietal and prefrontal cortex contributions to action modification. Cortex, 57, 38–50. doi: doi.org/10.1016/j.cortex.2014.03.005 CrossRef  Google Scholar  PubMed 
  75. Mutha, P.K., Stapp, L.H., Sainburg, R.L., & Haaland, K.Y. (2017). Motor adaptation deficits in ideomotor limb apraxia. Journal of the International Neuropsychological Society, 23, 139–149. doi: 10.1017/S135561771600120X CrossRef  Google Scholar 
  76. Nissen, M.J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19, 1–32. CrossRef  Google Scholar 
  77. Orban de Xivry, J.J., Criscimagna-Hemminger, S.E., & Shadmehr, R. (2011). Contributions of the motor cortex to adaptive control of reaching depend on the perturbation schedule. Cerebral Cortex, 21(7), 1475–1484. doi: 10.1093/cercor/bhq192 CrossRef  Google Scholar  PubMed 
  78. Osuriak, F., Jarry, C., & LeGall, D. (2011). Re-examining the gesture engram hypothesis. New perspectives on apraxia of tool use. Neuropsychologia, 49, 299–312. CrossRef  Google Scholar 
  79. Pammi, V.S.C., Miyapuram, K.P., Ahmed, S.K., Bapi, R.S., & Doya, K. (2012). Changing the structure of complex visuo-motor sequences selectively activates the fronto-parietal network. NeuroImage, 59, 1180–1189. CrossRef  Google Scholar  PubMed 
  80. Perry, A., Stiso, J., Channge, E.F., Lin, J.J., Parvizi, J., & Knight, R.T. (2017). Mirroring in the human brain: Deciphering the spatial-temporal patterns of the human mirror neuron system. Cerebral Cortex, doi: 10.1093/cercor/bhx013 CrossRef  Google Scholar 
  81. Picard, N., & Strick, P.L. (2001). Imaging the premotor areas. Current Opinion in Neurobiology, 11(6), 663–672. CrossRef  Google Scholar  PubMed 
  82. Poldrack, R.A., Clark, J., Pare-Blagoev, E.J., Shohamy, D., Creso Moyano, J., Myers, C., &Gluck, M.A. (2001). Interactive memory systems in the human brain. Nature, 414, 546–550. CrossRef  Google Scholar  PubMed 
  83. Rathelot, J.A., & Strick, P.L. (2006). Muscle representation in the macaque motor cortex: An anatomical perspective. Proceedings of the National Academy of Sciences of the United States of America, 103(21), 8257–8262. CrossRef  Google Scholar 
  84. Rathelot, J.A., & Strick, P.L. (2009). Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proceedings of the National Academy of Sciences of the United States of America, 106(3), 918–923. CrossRef  Google Scholar  PubMed 
  85. Rizzolatti, G., & Fogassi, L. (2014). The mirror mechanism: Recent findings and perspectives. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369, 20130420. http://dx.doi.org/10.1098/rstb.2013.0420 CrossRef  Google Scholar 
  86. Rowe, J.B., & Siebner, H.R. (2012). The motor system and its disorders. NeuroImage, 61, 464–477. CrossRef  Google Scholar  PubMed 
  87. Schendan, H.E., Searl, M.M., Melrose, R.J., & Stern, C.E. (2003). An FMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37, 1013–1025. doi: 10.1016/S0896-6273(03)00123-5 CrossRef  Google Scholar  PubMed 
  88. Schluter, N.D., Rushworth, M.F.S., Passingham, R.E., & Mills, K.R. (1998). Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements: A study using transcranial magnetic stimulation. Brain, 121, 785–799. CrossRef  Google Scholar  PubMed 
  89. Serrien, D.J., Ivry, R.B., & Swinnen, S.P. (2006). Dynamics of hemispheric specialization and integration in the context of motor control. Nature Reviews Neuroscience, 7, 160–167. CrossRef  Google Scholar  PubMed 
  90. Serrien, D.J., & Sovijarvi-Spape, M.M. (2016). Manual dexterity: Functional lateralization patterns and motor efficience. Brain and Cognition, 108, 42–46. doi: 10.1016/j.bandc.2016.07.005 CrossRef  Google Scholar 
  91. Shackman, A.J., Salomons, T.V., Slagter, H.A., Fox, A.S., Winter, J.J., & Davidson, R.J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews. Neuroscience, 12(3), 154–167. CrossRef  Google Scholar  PubMed 
  92. Shohamy, D., Myers, C.E., Onlaor, S., & Gluck, M.A. (2004). Role of the basal ganglia in category learning: How do patients with Parkinson’s disease learn? Behavioral Neuroscience, 118(4), 676–686. doi: 10.1037/0735-7044.118.4.676 CrossRef  Google Scholar  PubMed 
  93. Siegert, R.J., Taylor, K.D., Weatherall, M., & Abernethy, D.A. (2006). Is Implicit Sequence Learning Impaired in Parkinson’s Disease? A meta-analysis. Neuropsychology, 20(4), 490–495. DOI: 10.1037/0894-4105.20.4.490 CrossRef  Google Scholar  PubMed 
  94. Sirigu, A., Duhamel, J.-R., Cohen, L., Pillon, B., Duboisand, B., & Agid, Y. (1996). The mental representation of hand movements after parietal cortex damage. Science, 273(5281), 1564–1568. CrossRef  Google Scholar  PubMed 
  95. Smith, J.G., & McDowall, J. (2006). When artificial grammar acquisition in Parkinson’s disease is impaired: The case of learning via trial-by-trial feedback. Brain Research, 1067(1), 216–228. doi: 10.1016/j.brainres.2005.10.025 CrossRef  Google Scholar  PubMed 
  96. Smith, J., Siegert, R.J., McDowall, J., & Abernethy, D. (2001). Preserved implicit learning on both the serial reaction time task and artificial grammar in patients with Parkinson’s disease. Brain and Cognition, 45, 378–391. doi: 10.1006/brcg.2001.1286 CrossRef  Google Scholar  PubMed 
  97. Smith, M.A., & Shadmehr, R. (2005). Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. Journal of Neurophysiology, 93(5), 2809–2821. CrossRef  Google Scholar 
  98. Strick, P.L., Dum, R., & Fiez, J.A. (2009). Cerebellum and non-motor function. In S.E. Hyman, T.M. Jessel, C.J. Shatz & C.F. Stevens (Eds.), Annual review of neuroscience, (Vol. 32., pp. 413–434). Palo Alto, CA: Annual Reviews. Google Scholar 
  99. Taylor, J.A., Krakauer, J.W., & Ivry, R.B. (2014). Explicit and implicit contributions to learning in a sensorimotor adaptation task. Journal of Neuroscience, 34(8), 3023–3032. doi: 10.1523/JNEUROSCI.3619-13 CrossRef  Google Scholar 
  100. Tseng, Y.W., Diedrichsen, J., Krakauer, J.W., Shadmehr, R., & Bastian, A.J. (2007). Sensory prediction errors drive cerebellum-dependent adaptation of reaching. Journal of Neurophysiology, 98(1), 54–62. CrossRef  Google Scholar  PubMed 
  101. Verstynen, T., & Sabes, P.N. (2011). How each movement changes the next: An experimental and theoretical study of fast adaptive priors in reaching. Journal of Neuroscience, 31(27), 10050–10059. doi: 10.1523/JNEUROSCI.6525-10 CrossRef  Google Scholar  PubMed 
  102. Vingerhoets, G. (2014). Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools. Frontiers in Psychology, 5, 1–17. doi: 10.3389/fpsyg.2014.00151 CrossRef  Google Scholar 
  103. Wilkinson, L., Khan, Z., & Jahanshahi, M. (2009). The role of the basal ganglia and its cortical connections in sequence learning: Evidence from implicit and explicit sequence learning in Parkinson’s disease. Neuropsychologia, 47(12), 2564–2573. doi: 10.1016/j.neuropsychologia.2009.05.003 CrossRef  Google Scholar  PubMed 
  104. Willingham, D.B., & Koroshetz, W.J. (1993). Evidence for dissociable motor skills Huntington’s disease patients. Psychobiology, 21(3), 173–182. Google Scholar 
  105. Willingham, D.B., Salidis, J., & Gabrieli, J.D. (2002). Direct comparison of neural systems mediating conscious and unconscious skill learning. Learning and Memory, 1, 217–229. Google Scholar 
  106. Wolpert, D.M., Goodbody, S.J., & Husain, M. (1998). Maintaining internal representations: The role of the human superior parietal lobe. Nature Neuroscience, 1(6), 529–533. CrossRef  Google Scholar  PubMed 
  107. Wu, T., Wang, L., Hallett, M., Chen, Y., Li, K., & Chan, P. (2011). Effective connectivity of brain networks during self-initiated movement in Parkinson’s disease. NeuroImage, 55, 204–215. CrossRef  Google Scholar  PubMed 
Neuropsychological Assessment: Past and Future
  • Kaitlin B. Casaletto | Department of Neurology, University of California, San Francisco, California
  • Robert K. Heaton | Department of Psychiatry, University of California, San Diego, California


The authors have no conflicts of interest to disclose.


Neuropsychological assessment tools are the staple of our field. The development of standardized metrics sensitive to brain-behavior relationships has shaped the neuropsychologicalquestions we can ask, our understanding of discrete brain functions, and has informed the detection and treatment of neurological disorders. We identify key turningpoints and innovations in neuropsychological assessment over the past 40–50 years that highlight how the tools used in common practice today came to be. Also selectedfor emphasis are several exciting lines of research and novel approaches that are underway to further probe and characterize brain functions to enhance diagnosticand treatment outcomes. We provide a brief historical review of different clinical neuropsychological assessment approaches (Lurian, Flexible and Fixed Batteries,Boston Process Approach) and critical developments that have influenced their interpretation (normative standards, cultural considerations, longitudinal change, commonmetric batteries, and translational assessment constructs). Lastly, we discuss growing trends in assessment including technological advances, efforts to integrateneuropsychology across disciplines (e.g., primary care), and changes in neuropsychological assessment infrastructure. Neuropsychological assessment has undergone massivegrowth in the past several decades. Nonetheless, there remain many unanswered questions and future challenges to better support measurement tools and translate assessmentfindings into meaningful recommendations and treatments. As technology and our understanding of brain function advance, efforts to support infrastructure for bothtraditional and novel assessment approaches and integration of complementary brain assessment tools from other disciplines will be integral to inform brain healthtreatments and promote the growth of our field. (JINS, 2017, 23, 778–790)

  1. Adams, K.M., Kvale, V.I., & Keegan, J.F. (1984). Relative Accuracy of 3 Automated Systems for Neuropsychological Interpretation. Journal of Clinical Neuropsychology, 6(4), 413–431. doi: 10.1080/01688638408401232 CrossRef  Google Scholar 
  2. Adams, K.M. (1975). Automated clinical interpretation of the neuropsychological test battery: An ability based approach. Detroit, MI: Wayne State University, University Microfilms. Google Scholar 
  3. Al-Joudi, H. (2015). Availability of Arabic language tests in the Middle East and North Africa. In J.H. University (Ed.), INS NET: JINS. Google Scholar 
  4. Ardila, A., Rosselli, M., Matute, E., & Guajardo, S. (2005). The influence of the parents’ educational level on the development of executive functions. Developmental Neuropsychology, 28(1), 539–560. doi: 10.1207/s15326942dn2801_5 CrossRef  Google Scholar  PubMed 
  5. Arnold, B.R., Montgomery, G.T., Castaneda, I., & Longoria, R. (1994). Acculturation and performance of Hispanics on selected Halstead-Reitan neuropsychological tests. Assessment, 1(3), 239–248. CrossRef  Google Scholar 
  6. Bauer, R.M., Iverson, G.L., Cernich, A.N., Binder, L.M., Ruff, R.M., & Naugle, R.I. (2012). Computerized neuropsychological assessment devices: Joint position paper of the American Academy of Clinical Neuropsychology and the National Academy of Neuropsychology. The Clinical Neuropsychologist, 26(2), 177–196. doi: 10.1080/13854046.2012.663001 CrossRef  Google Scholar  PubMed 
  7. Bediou, B., Ryff, I., Mercier, B., Milliery, M., Henaff, M.A., D’Amato, T., & Krolak-Salmon, P. (2009). Impaired social cognition in mild Alzheimer disease. Journal of Geriatric Psychiatry and Neurology, 22(2), 130–140. doi: 10.1177/0891988709332939 CrossRef  Google Scholar  PubMed 
  8. Benton, A.L. (1994). Neuropsychological assessment. Annual Review of Psychology, 45, 1–23. doi: 10.1146/Annurev.Ps.45.020194.000245 CrossRef  Google Scholar  PubMed 
  9. Benton, A.L., Hamsher, K.S., Varney, N., & Spreen, O. (1983). Contributions to neuropsychological assessment: A clinical manual. Oxford, UK: Oxford University Press. Google Scholar 
  10. Bezdicek, O., Motak, L., Axelrod, B.N., Preiss, M., Nikolai, T., Vyhnalek, M., & Ruzicka, E. (2012). Czech version of the Trail Making Test: Normative data and clinical utility. Archives of Clinical Neuropsychology, 27(8), 906–914. doi: 10.1093/arclin/acs084 CrossRef  Google Scholar  PubMed 
  11. Bezdicek, O., Stepankova, H., Motak, L., Axelrod, B.N., Woodard, J.L., Preiss, M., & Poreh, A. (2014). Czech version of Rey Auditory Verbal Learning test: Normative data. Aging Neuropsychology and Cognition, 21(6), 693–721. doi: 10.1080/13825585.2013.865699 CrossRef  Google Scholar  PubMed 
  12. Bigler, E.D. (2007). A motion to exclude and the ‘fixed’ versus ‘flexible’ battery in ‘forensic’ neuropsychology: Challenges to the practice of clinical neuropsychology. Archives of Clinical Neuropsychology, 22(1), 45–51. doi: 10.1016/j.acn.2006.06.019 CrossRef  Google Scholar  PubMed 
  13. Brouliette, R.M., Foil, H., Fontenot, S., Correro, A., Allen, R., Martin, C.K., & Keller, J.N. (2013). Feasibilty, reliability, and validity of a smartphone based application for the assessment of cognitive function in the elderly. PLoS One, 8(6), e65925. CrossRef  Google Scholar 
  14. Carey, C.L., Woods, S.P., Rippeth, J.D., Heaton, R.K., Grant, I., & HIV Neurobehavioral Research Center (HNRC) Group. (2006). Prospective memory in HIV-1 infection. Journal of Clinical and Experimental Neuropsychology, 28(4), 536–548. CrossRef  Google Scholar  PubMed 
  15. Carter, C.S., & Barch, D.M. (2007). Cognitive neuroscience-based approaches to measuring and improving treatment effects on cognition in schizophrenia: The CNTRICS initiative. Schizophrenia Bulletin, 33(5), 1131–1137. CrossRef  Google Scholar  PubMed 
  16. Cassitto, M.G., Camerino, D., Hanninen, H., & Anger, W.K. (1990). International collaboration to evaluate the Who Neurobehavioral Core Test Battery. In B.L. Johnson, W.K. Anger, A. Durao & C. Xintaras (Eds.), Advances in neurobehavioral toxicology: Applications in environmental and occupational health (pp. 203–223). Chelsea, MI: Lewis. Google Scholar 
  17. Chelune, G.J., Naugle, R.I., Luders, H., Selak, J., & Awad, I.A. (1993). Individual change after epilepsy surgery: Practice effects and base-rate information. Neuropsychology, 7, 41–52. CrossRef  Google Scholar 
  18. Crawford, J.R., & Garthwaite, P.H. (2007). Using regression equations built from summary data in the neuropsychological assessment of the individual case. Neuropsychology, 21(5), 611–620. doi: 10.1037/0894-4105.21.5.611 CrossRef  Google Scholar  PubMed 
  19. Crawford, J.R., Garthwaite, P.H., Denham, A.K., & Chelune, G.J. (2012). Using regression equations built from summary data in the psychological assessment of the individual case: Extension to multiple regression. Psychological Assessment, 24(4), 801–814. doi: 10.1037/a0027699 CrossRef  Google Scholar  PubMed 
  20. Cutler, N.R., Shrotriya, R.C., Sramek, J.J., Veroff, A.E., Seifert, R.D., Reich, L.A., && Hironaka, D.Y. (1993). The use of the Computerized Neuropsychological Test Battery (CNTB) in an efficacy and safety trial of BMY 21,502 in Alzheimer’s disease. Annals of the New York Academy of Sciences, 695, 332–336. CrossRef  Google Scholar 
  21. Cysique, L.A., Franklin, D. Jr., Abramson, I., Ellis, R.J., Letendre, S., Collier, A., & Simpson, D. (2011). Normative data and validation of a regression based summary score for assessing meaningful neuropsychological change. Journal of Clinical and Experimental Neuropsychology, 33(5), 505–522. CrossRef  Google Scholar  PubMed 
  22. Damasio, A.R., & Tranel, D. (1993). Nouns and verbs are retrieved with differently distributed neural systems. Proceedings of the National Academy of Sciences of the United States of America, 90(11), 4957–4960. doi: 10.1073/Pnas.90.11.4957 CrossRef  Google Scholar  PubMed 
  23. de Almeida, S.M., Ribeiro, C.E., de Pereira, A.P., Badiee, J., Cherner, M., Smith, D., & Heaton, R.K. (2013). Neurocognitive impairment in HIV-1 clade C-versus B-infected individuals in Southern Brazil. Journal of Neurovirology, 19(6), 550–556. CrossRef  Google Scholar 
  24. Delis, D.C., Kramer, J.H., Kaplan, E., & Ober, B.A. (1987). California Verbal Learning Test: Adult version. Manual. San Antonio, TX: Psychological Corportation. Google Scholar 
  25. Delis, D., Kramer, J.H., Kaplan, E., & Ober, B. (2000). The California Verbal Learning Test–Second edition. San Antonio, TX: The Psychological Corporation. Google Scholar 
  26. Delis, D., Kaplan, E., & Kramer, J. (2001). Delis-Kaplan Executive Function System. San Antonio, TX: The Psychological Corporation. Google Scholar  PubMed 
  27. Draper, I.T. (1976). Luria’s neuropsychological investigation. Journal of Neurology, Neurosurgery, and Psychiatry, 39(4), 409–410. CrossRef  Google Scholar 
  28. Deuel, R.K. (1971). Assessment of brain damage: A neuropsychological key approach. Archives of Neurology, 25(1), 95–95. CrossRef  Google Scholar 
  29. Einstein, G.O., & Mcdaniel, M.A. (1990). Normal aging and prospective memory. Journal of Experimental Psychology. Learning Memory and Cognition, 16(4), 717–726. doi: 10.1037/0278-7393.16.4.717 CrossRef  Google Scholar  PubMed 
  30. Ekman, P., & Friesen, W.V. (1976). Pictures of facial affect. Palo Alto, CA: Consulting Psychologists Press. Google Scholar 
  31. Ellis, J., & Kvavilashvili, L. (2000). Prospective memory in 2000: Past, present, and future directions. Applied Cognitive Psychology, 14, S1–S9. doi: 10.1002/Acp.767.Abs CrossRef  Google Scholar 
  32. Elwood, R.W. (2001). MicroCog: Assessment of cognitive functioning. Neuropsychology Review, 11(2), 89–100. doi: 10.1023/A:1016671201211 CrossRef  Google Scholar  PubMed 
  33. Fasfous, A.F., Al-Joudi, H.F., Puente, A.E., & Perez-Garcia, M. (2017). Neuropsychological measures in the Arab World: A systematic review. Neuropsychology Review, 27, 158–173. doi: 10.1007/s11065-017-9347-3 CrossRef  Google Scholar  PubMed 
  34. Finkelstein, J.N. (1977). BRAIN: A computer program for interpretation of the Halstead-Reitan Neuropsychological Test Battery. New York, NY: Columbia University, University Microfilms. Google Scholar 
  35. Flores, I., Casaletto, K.B., Marquine, M.J., Umlauf, A., Moore, D.J., Mungas, D., & Heaton, R.K. (2017). Performance of Hispanics and Non-Hispanic Whites on the NIH Toolbox Cognition Battery: The roles of ethnicity and language backgrounds. The Clinical Neuropsychologist, 31, 783–797. doi: 10.1080/13854046.2016.1276216 CrossRef  Google Scholar  PubMed 
  36. Fratti, S., Bowden, S.C., & Cook, M.J. (2016). Reliability and validity of the CogState computerized battery in patients with seizure disorders and healthy young adults: Comparison with standard neuropsychological tests. Clin Neuropsychol, 31, 569–586. doi: 10.1080/13854046.2016.1256435 CrossRef  Google Scholar  PubMed 
  37. Fuiji, D. (2017). Conducting a culturally informed neuropsychological evaluation. Washington, DC: American Psychological Association. CrossRef  Google Scholar 
  38. Gershon, R.C., Wagster, M.V., Hendrie, H.C., Fox, N.A., Cook, K.F., & Nowinski, C.J. (2013). NIH toolbox for assessment of neurological and behavioral function. Neurology, 80, S2–S6. doi: 10.1212/WNL.0b013e3182872e5f CrossRef  Google Scholar  PubMed 
  39. Ghate, M., Mehendale, S., Meyer, R., Umlauf, A., Deutsch, R., Kamat, R., & Alexander, T. (2015). The effects of antiretroviral treatment initiation on cognition in HIV-infected individuals with advanced disease in Pune, India. Journal of Neurovirology, 21(4), 391–398. CrossRef  Google Scholar  PubMed 
  40. Golden, C.J., Purisch, A.D., & Hammeke, T.A. (1979). The Luria-Nebraska Neuropsychological Battery: A manual for clinical and experimental uses. Lincoln, NE: University of Nebraska Press. Google Scholar 
  41. Grant, I., & Heaton, R.K. (2015). Ralph M. Reitan: A founding father of neuropsychology. Archives of Clinical Neuropsychology, 30(8), 760–761. doi: 10.1093/arclin/acv077 CrossRef  Google Scholar 
  42. Green, M.F., Nuechterlein, K.H., Gold, J.M., Barch, D.M., Cohen, J., Essock, S., & Marder, S.R. (2004). Approaching a consensus cognitive battery for clinical trials in schizophrenia: The NIMH-MATRICS conference to select cognitive domains and test criteria. Biological Psychiatry, 56(5), 301–307. doi: 10.1016/j.biopsych.2004.06.023 CrossRef  Google Scholar  PubMed 
  43. Green, M.F., Olivier, B., Crawley, J.N., Penn, D.L., & Silverstein, S. (2005). Social cognition in schizophrenia: Recommendations from the measurement and treatment research to improve cognition in schizophrenia new approaches conference. Schizophrenia Bulletin, 31(4), 882–887. doi: 10.1093/schbul/sbi049 CrossRef  Google Scholar  PubMed 
  44. Greenwald, A.G., McGhee, D.E., & Schwartz, J.L.K. (1998). Measuring individual differences in implicit cognition: The implicit association test. Journal of Personality and Social Psychology, 74(6), 1464–1480. doi: 10.1037/0022-3514.74.6.1464 CrossRef  Google Scholar  PubMed 
  45. Gupta, S., Iudicello, J.E., Shi, C., Letendre, S., Knight, A., Li, J., & Atkinson, J.H. (2014). Absence of neurocognitive impairment in a large Chinese sample of HCV-infected injection drug users receiving methadone treatment. Drug and Alcohol Dependence, 137, 29–35. CrossRef  Google Scholar 
  46. Harris, M.E., Ivnik, R.J., & Smith, G.E. (2002). Mayo’s older americans normative studies: Expanded AVLT recognition trial norms for ages 57 to 98. Journal of Clinical and Experimental Neuropsychology, 24(2), 214–220. doi: 10.1076/Jcen. CrossRef  Google Scholar  PubMed 
  47. Heaton, R.K., Grant, I., & Matthews, C.G. (1991). Comprehensive norms for an expanded Halstead-Reitan battery: Demographic corrections, research findings, and clinical applications. Odessa, FL: Psychological Assessment Resources. Google Scholar 
  48. Heaton, R.K., Temkin, N., Dikmen, S., Avitable, N., Taylor, M.J., Marcotte, T.D., & Grant, I. (2001). Detecting change: A comparison of three neuropsychological methods, using normal and clinical samples. Archives of Clinical Neuropsychology, 16(1), 75–91. doi: 10.1016/S0887-6177(99)00062-1 CrossRef  Google Scholar  PubMed 
  49. Heaton, R.K., Miller, S.W., Taylor, J.T., & Grant, I. (2004). Revised comprehensive norms for an expanded Halstead-Reitan Battery: Demographically adjusted neuropsychological norms for African American and Caucasian adults. Lutz, FL: Psychological Assessment Resources, Inc. Google Scholar 
  50. Heaton, R.K., Cysique, L.A., Jin, H., Shi, C., Yu, X., Letendre, S., & Marcotte, T.D. (2008). Neurobehavioral effects of human immunodeficiency virus infection among former plasma donors in rural China. Journal of Neurovirology, 14(6), 536–549. CrossRef  Google Scholar  PubMed 
  51. Hermann, B.P., Seidenberg, M., Schoenfeld, J., Peterson, J., Leveroni, C., & Wyler, A.R. (1996). Empirical techniques for determining the reliability, magnitude, and pattern of neuropsychological change after epilepsy surgery. Epilepsia, 37(10), 942–950. CrossRef  Google Scholar  PubMed 
  52. Hestad, K.A., Menon, J.A., Serpell, R., Kalungwana, L., Mwaba, S.O., Kabuba, N., & Heaton, R.K. (2016). Do neuropsychological test norms from African Americans in the United States generalize to a Zambian population?. Psychological Assessment, 28(1), 18. CrossRef  Google Scholar  PubMed 
  53. Holtzer, R., Goldin, Y., Zimmerman, M., Katz, M., Buschke, H., & Lipton, R.B. (2008). Robust norms for selected neuropsychological tests in older adults. Archives of Clinical Neuropsychology, 23(5), 531–541. doi: 10.1016/j.acn.2008.05.004 CrossRef  Google Scholar  PubMed 
  54. Homer, B.D., Solomon, T.M., Moeller, R.W., Mascia, A., DeRaleau, L., & Halkitis, P.N. (2008). Methamphetamine abuse and impairment of social functioning: A review of the underlying neurophysiological causes and Behavioral implications. Psychological Bulletin, 134(2), 301–310. doi: 10.1037/0033-2909.134.2.301 CrossRef  Google Scholar  PubMed 
  55. Ivnik, R.J., Malec, J.F., Smith, G.E., Tangalos, E.G., Petersen, R.C., Kokmen, E., && Kurland, L.T. (1992a). Mayo’s Older Americans Normative Studies: WAIS-R norms for ages 56 to 97. The Clinical Neuropsychologist, 6(S1), 1–30. CrossRef  Google Scholar 
  56. Ivnik, R.J., Malec, J.F., Smith, G.E., Tangalos, E.G., Petersen, R.C., Kokmen, E., && Kurland, L.T. (1992b). Mayo’s Older Americans Normative Studies: Updated AVLT norms for ages 56 to 97. The Clinical Neuropsychologist, 6(S1), 83–104. CrossRef  Google Scholar 
  57. Jacobson, N.S., & Truax, P. (1991). Clinical-significance - A statistical approach to defining meaningful change in psychotherapy-research. Journal of Consulting and Clinical Psychology, 59(1), 12–19. doi: 10.1037//0022-006x.59.1.12 CrossRef  Google Scholar  PubMed 
  58. Kabuba, N., Menon, J.A., Franklin, D.R., Heaton, R.K., & Hestad, K.A. (2017). Use of Western neuropsychological test battery in detecting hiv-associated neurocognitive disorders (HAND) in Zambia. AIDS and Behavior, 21(6), 1717–1727. CrossRef  Google Scholar 
  59. Kamat, R., Ghate, M., Gollan, T.H., Meyer, R., Vaida, F., Heaton, R.K., & Mehendale, S. (2012). Effects of Marathi-Hindi bilingualism on neuropsychological performance. Journal of the International Neuropsychological Society, 18(2), 305–313. CrossRef  Google Scholar  PubMed 
  60. Kamat, R., McCutchan, A., Kumarasamy, N., Marcotte, T.D., Umlauf, A., Selvamuthu, P., & Bharti, A.R. (2017). Neurocognitive functioning among HIV-positive adults in southern India. Journal of Neurovirology. [Epub ahead of print]. Google Scholar 
  61. Kaplan, E. (1988). The process approach to neuropsychological assessment. Aphasiology, 2(3-4), 309–311. doi: 10.1080/02687038808248930 CrossRef  Google Scholar  PubMed 
  62. Kaplan, E., Fein, D., Morris, R., & Delis, D. (1991). The WAIS-R as a neuropsychological instrument. San Antonio, TX: Psychological Corporation. Google Scholar 
  63. Kliegel, M., Altgassen, M., Hering, A., & Rose, N.S. (2011). A process-model based approach to prospective memory impairment in Parkinson’s disease. Neuropsychologia, 49(8), 2166–2177. doi: 10.1016/j.neuropsychologia.2011.01.024 CrossRef  Google Scholar  PubMed 
  64. Ko, J., Rosen, A.B., Simpson, K.J., & Brown, C.N. (2014). Cross-cultural adaption and reliability of the Korean version of the identification of functional ankle instability. Medicine and Science in Sports and Exercise, 46(5), 203–203. CrossRef  Google Scholar 
  65. Kramer, J.H., Mungas, D., Possin, K.L., Rankin, K.P., Boxer, A.L., Rosen, H.J., & Widmeyer, M. (2014). NIH EXAMINER: Conceptualization and development of an executive function battery. Journal of the International Neuropsychological Society, 20(1), 11–19. CrossRef  Google Scholar  PubMed 
  66. Kreutzer, J.S., DeLuca, J., & Caplan, B. (Eds) 2011). Encyclopedia of Clinical Neuropsychology. Halstead-Reitan Neuropsychology Test Battery (pp. 1201–1205). New York: Springer. CrossRef  Google Scholar 
  67. Larrabee, G.J. (2008). Flexible vs. fixed batteries in forensic neuropsychological assessment: Reply to Bigler and Hom. Archives of Clinical Neuropsychology, 23(7-8), 763–776. doi: 10.1016/j.acn.2008.09.004 CrossRef  Google Scholar 
  68. Lenehan, M.E., Summers, M.J., Saunders, N.L., Summers, J.J., & Vickers, J.C. (2016). Does the Cambridge Automated Neuropsychological Test Battery (CANTAB) distinguish between cognitive domains in healthy older adults? Assessment, 23(2), 163–172. doi: 10.1177/1073191115581474 CrossRef  Google Scholar  PubMed 
  69. Lezak, M.D. (1976). Neuropsychological assessment. Oxford, England: Oxford University Press. Google Scholar  PubMed 
  70. Loftus, E. (1971). Memory for intentions: The effect of presence of a cue and interpolated activity. Psychonomic Science, 23, 315–316. CrossRef  Google Scholar 
  71. Lucas, J.A., Ivnik, R.J., Willis, F.B., Ferman, T.J., Smith, G.E., Parfitt, F.C., & Graff-Radford, N.R. (2005). Mayo’s older African Americans normative studies: Normative data for commonly used clinical neuropsychological measures. Clinical Neuropsychologist, 19(2), 162–183. doi: 10.1080/13854040590945265 CrossRef  Google Scholar  PubMed 
  72. Luria, A.R. (1966). Higher cortical functions in man. New York: Springer. Google Scholar 
  73. Machulda, M.M., Ivnik, R.J., Smith, G.E., Ferman, T.J., Boeve, B.F., Knopman, D., & Tangalos, E.G. (2008). Mayo’s older Americans normative studies: Visual form discrimination and copy trial of the Rey-Osterrieth complex figure. Journal of Clinical and Experimental Neuropsychology, 29(5), 377–384. doi: 10.1080/13803390701850817 CrossRef  Google Scholar  PubMed 
  74. Malda, M., van de Vijver, F.J.R., Srinivasan, K., Transler, C., & Sukumar, P. (2010). Traveling with cognitive tests: Testing the validity of a KABC-II adaptation in India. Assessment, 17(1), 107–115. doi: 10.1177/1073191109341445 CrossRef  Google Scholar  PubMed 
  75. Manly, J.J. (2008). Critical issues in cultural neuropsychology: Profit from diversity. Neuropsychology Review, 18(3), 179. CrossRef  Google Scholar  PubMed 
  76. Manly, J.J., Jacobs, D.M., Touradji, P., Small, S.A., & Stern, Y. (2002). Reading level attenuates differences in neuropsychological test performance between African American and White elders. Journal of the International Neuropsychological Society, 8(3), 341–348. CrossRef  Google Scholar  PubMed 
  77. Marcotte, T.D., & Grant, I. (Eds.) (2009). Neuropsychology of everyday functioning. New York: Guilford Press. Google Scholar 
  78. McCaffrey, R.J. (Ed.) (2007). Automated neuropsychological assessment metrics [Special issue]. Archives of Clinical Neuropsychology, 22S, S1. CrossRef  Google Scholar 
  79. McDonald, S. (2017). Emotions are rising: The growing field of affect neuropsychology. Journal of the International Neuropsychological Society, 23, 719–731. CrossRef  Google Scholar 
  80. McDonald, S., Flanagan, S., & Rollins, J. (2011). The awareness of social inference test (Revised). Sydney, Australia: Pearson Assessment. Google Scholar  PubMed 
  81. McDonald, S., Flanagan, S., Rollins, J., & Kinch, J. (2003). TASIT: A new clinical tool for assessing social perception after traumatic brain injury. Journal of Head Trauma Rehabilitation, 18, 219–238. CrossRef  Google Scholar  PubMed 
  82. McSweeny, A.J., Naugle, R.I., Chelune, G.J., & Luders, H. (1993). “T scores for change”: An illustration of a regression approach to depicting change in clinical neuropsychology. The Clinical Neuropsychologist, 7(3), 300–312. CrossRef  Google Scholar 
  83. Merikle, P.M., Smilek, D., & Eastwood, J.D. (2001). Perception without awareness: Perspectives from cognitive psychology. Cognition, 79(1), 115–134. CrossRef  Google Scholar  PubMed 
  84. Moore, D.J., Palmer, B.W., Patterson, T.L., & Jeste, D.V. (2007). A review of performance-based measures of functional living skills. Journal of Psychiatric Research, 41(1-2), 97–118. doi: 10.1016/j.psychires.2005.10.008 CrossRef  Google Scholar  PubMed 
  85. Nell, V. (1999). Luria in Uzbekistan: The vicissitudes of cross-cultural neuropsychology. Neuropsychology Review, 9(1), 45–52. doi: 10.1023/A:1025643004782 CrossRef  Google Scholar  PubMed 
  86. Nell, V., Myers, J., Colvin, M., & Rees, D. (1994). Neuropsychological assessment of organic solvent effects in South-Africa - Test selection, adaptation, scoring, and validation issues. Environmental Research, 63, 301–318. CrossRef  Google Scholar  PubMed 
  87. Nuechterlein, K.H., Green, M.F., Kern, R.S., Baade, L.E., Barch, D.M., Cohen, J.D., & Marder, S.R. (2008). The MATRICS consensus cognitive battery, part 1: Test selection, reliability, and validity. American Journal of Psychiatry, 165(2), 203–213. doi: Doi 10.1176/Appi.Ajp.2007.07010042 CrossRef  Google Scholar  PubMed 
  88. Parsey, C.M., & Schmitter-Edgecombe, M. (2013). Applications of technology in neuropsychological assessment. The Clinical Neuropsychologist, 27(8), 1328–1361. doi: 10.1080/13854046.2013.834971 CrossRef  Google Scholar  PubMed 
  89. Parsons, T.D. (2015). Virtual reality for enhanced ecological validity and experimental control in the clinical, affective and social neurosciences. Frontiers in Human Neuroscience, 9, 660. doi: Artn 66010.3389/Fnhum.2015.00660 CrossRef  Google Scholar  PubMed 
  90. Piatt, A.L., Fields, J.A., Paolo, A.M., Koller, W.C., & Troster, A.I. (1999). Lexical, semantic, and action verbal fluency in Parkinson’s disease with and without dementia. Journal of Clinical and Experimental Neuropsychology, 21(4), 435–443. doi: 10.1076/Jcen.21.4.435.885 CrossRef  Google Scholar  PubMed 
  91. Piatt, A.L., Fields, J.A., Paolo, A.M., & Troster, A.I. (1999). Action (verb naming) fluency as an executive function measure: Convergent and divergent evidence of validity. Neuropsychologia, 37(13), 1499–1503. doi: 10.1016/S0028-3932(99)00066-4 CrossRef  Google Scholar  PubMed 
  92. Pijnenborg, G.H., Withaar, F.K., Evans, J.J., van den Bosch, R.J., Timmerman, M.E., & Brouwer, W.H. (2009). The predictive value of measures of social cognition for community functioning in schizophrenia: Implications for neuropsychological assessment. Journal of the International Neuropsychological Society, 15(2), 239–247. doi: 10.1017/S1355617709090341 CrossRef  Google Scholar  PubMed 
  93. Pinkham, A.E., Hopfinger, J.B., Pelphrey, K.A., Piven, J., & Penn, D.L. (2008). Neural bases for impaired social cognition in schizophrenia and autism spectrum disorders. Schizophrenia Research, 99(1-3), 164–175. doi: 10.1016/j.schres.2007.10.024 CrossRef  Google Scholar  PubMed 
  94. Purisch, A.D. (2001). Misconceptions about the Luria-Nebraska Neuropsychological Battery. NeuroRehabilitation, 16(4), 275–280. Google Scholar  PubMed 
  95. Raskin, S.A. (2004). Memory for intentions screening test. Paper presented at the Journal of the International Neuropsychological Society. Google Scholar 
  96. Reeves, D.L., Winter, K.P., Bleiberg, J., & Kane, R.L. (2007). ANAM Genogram: Historical perspectives, description and current endeavors. Archives of Clinical Neuropsychology, 22(Suppl. 1), S15–S37. CrossRef  Google Scholar  PubMed 
  97. Reitan, R.M. (1985). Halstead-Reitan Neuropsychological Test Battery: Theory and clinical interpretation. Tuscon, AZ: Neuropsychology Press. Google Scholar 
  98. Reitan, R.M. (1994). Ward Halstead’s contributions to neuropsychology and the Halstead-Reitan Neuropsychological Test Battery. Journal of Clinical Psychology, 50(1), 47–70. doi: 10.1002/1097-4679(199401)50:1<47::Aid-Jclp2270500106>3.0.Co;2-X3.0.CO;2-X>CrossRef Google Scholar  PubMed 
  99. Reitan, R.M., & Davidson, L.D. (1974). Clinical neuropsychology: Current status and applications. Washington, DC: Winston. Google Scholar 
  100. Ruffieux, N., Njamnshi, A.K., Mayer, E., Sztajzel, R., Eta, S.C., Doh, R.F., & Hauert, C.A. (2010). Neuropsychology in Cameroon: First normative data for cognitive tests among school-aged children. Child Neuropsychology, 16(1), 1–19. doi: 10.1080/09297040902802932 CrossRef  Google Scholar  PubMed 
  101. Russell, E.W., Neuringer, C., & Goldstein, G. (1970). Assessment of brain damage: A neuropsychological key approach. New York: Interscience. Google Scholar 
  102. Sahakian, B.J., & Owen, A.M. (1992). Computerized assessment in neuropsychiatry using CANTAB: Discussion paper. Journal of the Royal Society of Medicine, 85(7), 399–402. Google Scholar  PubMed 
  103. Sawrie, S.M., Chelune, G.J., Naugle, R.I., & Luders, H.O. (1996). Empirical methods for assessing meaningful neuropsychological change following epilepsy surgery. Journal of the International Neuropsychological Society, 2(6), 556–564. CrossRef  Google Scholar  PubMed 
  104. Shany-Ur, T., & Rankin, K.P. (2011). Personality and social cognition in neurodegenerative disease. Current Opinion in Neurology, 24(6), 550–555. doi: 10.1097/WCO.0b013e32834cd42a CrossRef  Google Scholar  PubMed 
  105. Shi, C., Kang, L., Yao, S., Ma, Y., Li, T., Liang, Y., & Zhang, C. (2015). The MATRICS consensus cognitive battery (MCCB): Co-norming and standardization in China. Schizophrenia Research, 169(1), 109–115. CrossRef  Google Scholar 
  106. Sliwinski, M.J., Mogle, J.A., Hyun, J., Munoz, E., Smyth, J.M., & Lipton, R.B. (2016). Reliability and validity of ambulatory cognitive assessments. Assessment. [Epub ahead of print]. doi: 10.1177/1073191116643164 CrossRef  Google Scholar 
  107. Smith, G.E., Wong, J.S., Ivnik, R.J., & Malec, J.F. (1997). Mayo’s older American normative studies: Separate norms for WMS-R logical memory stories. Assessment, 4(1), 79–86. CrossRef  Google Scholar 
  108. Tate, R. (2010). A compendium of tests, scales and questionnaires: The practitioner’s guide to measuring outcomes after acquired brain impairment. New York: Psychology Press. Google Scholar 
  109. Temkin, N.R., Heaton, R.K., Grant, I., & Dikmen, S.S. (1999). Detecting significant change in neuropsychological test performance: A comparison of four models. Journal of the International Neuropsychological Society, 5(4), 357–369. CrossRef  Google Scholar  PubMed 
  110. Tranel, D. (2009). The Iowa-Benton School of Neuropsychological Assessment. In I. Grant & K.M. Adams (Eds.), Neuropsychological assessment of neuropsychiatric and neuromedical disorders. New York: Oxford University Press. Google Scholar 
  111. Twamley, E.W., Woods, S.P., Dawson, M.S., Narvaez, J.M., & Jeste, D.V. (2007). Remembering to remember: Prospective memory impairment in schizophrenia. Schizophrenia Bulletin, 33(2), 578–578. Google Scholar 
  112. Valciukas, J.A., Levin, S.M., Nicholson, W.J., & Selikoff, I.J. (1986). Neurobehavioral assessment of Mohawk Indians for subclinical indications of methyl mercury neurotoxicity. Archives of Environmental Health, 41(4), 269–272. CrossRef  Google Scholar  PubMed 
  113. Weinstein, C.S., Fucetola, R., & Mollica, R. (2001). Neuropsychological issues in the assessment of refugees and victims of mass violence. Neuropsychology Review, 11(3), 131–141. doi: 10.1023/A:1016650623996 CrossRef  Google Scholar  PubMed 
  114. Wilson, B., Alderman, N., Burgess, P., Emslie, H., & Evans, J.J. (1996). Behavioural assessment of the Dysexecutive Syndrome (BADS). Manual. London: Harcourt Assessment. Google Scholar 
  115. Woods, S.P., Carey, C.L., Troster, A.I., Grant, I., & HIV Neurobehavioral Research Center Group. (2005). Action (verb) generation in HIV-1 infection. Neuropsychologia, 43(8), 1144–1151. doi: 10.1016/j.neuropsychologia.2004.11.018 CrossRef  Google Scholar  PubMed 
  116. Woods, S.P., Dawson, M.S., Weber, E., Gibson, S., Grant, I., Atkinson, J.H., & HIV Neurobehavioral Research Center Group. (2009). Timing is everything: Antiretroviral nonadherence is associated with impairment in time-based prospective memory. Journal of the International Neuropsychological Society, 15(1), 42–52. doi: 10.1017/S1355617708090012 CrossRef  Google Scholar  PubMed 
  117. Woods, S.P., Iudicello, J.D., Dawson, M.S., Moran, L.M., Carey, C.L., Letendre, S.L., & Grant, I. (2007). HIV-associated prospective memory deficits predict functional dependence. Clinical Neuropsychologist, 21(4), 701–701. Google Scholar 
  118. Woods, S.P., Iudicello, J.E., Moran, L.M., Carey, C.L., Dawson, M.S., Grant, I., & HIV Neurobehavioral Research Center Group. (2008). HIV-Associated prospective memory impairment increases risk of dependence in everyday functioning. Neuropsychology, 22(1), 110–117. doi: 10.1037/0894-4105.22.1.110 CrossRef  Google Scholar  PubMed 
  119. Woods, S.P., Iudicello, J.E., Morgan, E.E., Cameron, M.V., Doyle, K.L., Smith, T.V., & HIV Neurobehavioral Research Center Group. (2016). Health-related everyday functioning in the internet age: HIV-associated neurocognitive disorders disrupt online pharmacy and health chart navigation skills. Archives of Clinical Neuropsychology, 31(2), 176–185. doi: 10.1093/arclin/acv090 Google Scholar  PubMed 
  120. Woods, S.P., Morgan, E.E., Dawson, M., Scott, J.C., & Grant, I., HIV Neurobehavioral Research Center Group. (2006). Action (verb) fluency predicts dependence in instrumental activities of daily living in persons infected with HIV-1. Journal of Clinical and Experimental Neuropsychology, 28(6), 1030–1042. doi: 10.1080/13803390500350985 CrossRef  Google Scholar 
  121. Woods, S.P., Scott, J.C., Sires, D.A., Grant, I., Heaton, R.K., & Troster, A.I., HIV Neurobehavioral Research Center Group. (2005). Action (verb) fluency: Test-retest reliability, normative standards, and construct validity. Journal of the International Neuropsychological Society, 11(4), 408–415. doi: 10.1017/S1355617705050460 Google Scholar  PubMed 
  122. Woods, S.P., Iudicello, J.E., Morgan, E.E., Verduzco, M., Smith, T.V., & Cushman, C., HIV Neurobehavioral Research Center Group. (In press). Household everyday functioning in the Internet age: Online shopping and banking skills are affected in HIV-associated neurocognitive disorders. Journal of the International Neuropsychological SocietyGoogle Scholar 
  123. Zhu, J.J., & Tulsky, D.S. (2000). Co-norming the WAIS-III and WMS-III: Is there a test-order effect on IQ and memory scores? Clinical Neuropsychologist, 14(4), 461–467. doi: 10.1076/Clin.14.4.461.7197 CrossRef  Google Scholar 
  124. Zogg, J.B., Woods, S.P., Sauceda, J.A., Wiebe, J.S., & Simoni, J.M. (2012). The role of prospective memory in medication adherence: A review of an emerging literature. Journal of Behavioral Medicine, 35(1), 47–62. doi: 10.1007/s10865-011-9341-9 CrossRef  Google Scholar  PubMed