1.5 CE Credits - Special Issue: The Neuropsychology of Neurodevelopmental Disorders (JINS 24:9, 2018): CE Bundle 2

apa-logo_white_screenThe International Neuropsychological Society is approved by the American Psychological Association to sponsor continuing education for psychologists. The International Neuropsychological Society maintains responsibility for this program and its content.
Educational Objectives
  1. Describe cognitive and cerebellar outcomes in congenital heart disease (CHD).
  2. Explain the proposed mechanisms by which the cerebellum is related to executive functioning (in CHD).
  3. Describe the spacing effect and the use of distributed practice as a memory enhancement tool.
  4. Describe developmental amnesia and the impact of hippocampal pathology on memory.
  5. Describe the relationship between childhood executive functioning and young adult outcomes in individuals with 22q11.2 deletion syndrome (22q11DS).
  6. List how these relationships are different in 22q11DS relative to control participants.

Course Information
Target Audience:Intermediate
Availability:Date Available: 2019-04-01
You may obtain CE for this JINS package at any time.
Offered for CEYes
CostMembers $15
Non-Members $22.50
Refund PolicyThis JINS package is not eligible for refunds
CE Credits1.5


Neurodevelopmental disorders are conditions that involve early insult or abnormality in the developing central nervous system and are associated with a wide spectrum of abilities. These conditions begin during the early developmental period (usually conceptualized as prenatally though the first 3 years of life), affect day-to-day functioning, and are often lifelong. Because the “typical” development of the nervous system has been altered in individuals with neurodevelopmental disorders, reorganization and competition for function occur, usually resulting in skill patterns that are less efficient than among individuals without such conditions. The timing of these alterations or developmental disruptions is also relevant, as different neural systems are selectively vulnerable to injury at different phases of prenatal and post-natal development. As a result, the behavioral and cognitive dysfunction associated with early neural damage can range from subtle (or absent) to diffuse and profound. Moreover, the functional impairments can be observed immediately in some individuals, while in others, the full range of deficits may not manifest until later in life, even though the neurobiological basis of the condition is present earlier (Rudel, 1981).

Among children with neurodevelopmental disorders, the trajectory is often “off developmental track” relative to the trajectory of typically developing children. Developmental delays (i.e., patterns of skill development that should have occurred earlier in life) are often observed early in life. While functional catch-up is possible, it is often incomplete, and the resulting maturational timelines based on typical development become less applicable (Mahone, Slomine, & Zabel, 2018).

Neurodevelopmental disorders are highly prevalent. Recent estimates from the Centers for Disease Control and Prevention (CDC) in the United States show that around one in six, or approximately 17%, of children ages 3 through 17 years have one or more neurodevelopmental disabilities (Boyle et al., 2011). The rates also are increasing, and the CDC reports may underestimate the actual prevalence worldwide. In the past 25 years, medical advances have improved the life course of several genetic, medical, and neurodevelopmental conditions, making them more survivable and compatible with life (e.g., very low birth weight preterm infants, congenital hydrocephalus) and extending the expected lifespan of others (e.g., cystic fibrosis, sickle cell disease). Due to higher survival rates and lifespans extending into adulthood, increased attention has been given to the development of self-management and independence skills and the transition into older adolescence and young adulthood (Tarazi, Mahone, & Zabel, 2007; Warschausky, Kaufman, Evitts, Schutt, & Hurvitz, 2017; Zabel, Jacobson, & Mahone, 2013). Given these considerations, the assessment and study of individuals with neurodevelopmental disorders is of significant interest to neuropsychologists.

Classification of neurodevelopmental disorders can be conceptualized using two primary approaches, one emphasizing behavior (without explicit reference to etiology), and the other emphasizing etiological medical, genetic, and neurological factors (Mahone et al., 2018). In the field of neuropsychology, those neurodevelopmental disorders defined on the basis of behavior (including attention-deficit/hyperactivity Disorder, ADHD; learning disabilities, LDs; autism spectrum disorders, ASDs; and intellectual disability, ID) have received considerable emphasis, in part because of their prevalence and overall public health relevance (Leigh & Du, 2015; Mahone & Denckla, 2017; Mahone & Mapou, 2014). Neurodevelopmental disorders diagnosed on the basis of known or presumed medical etiologic factors have received somewhat less emphasis among neuropsychologists. Such conditions include those with genetic, environmental (injury, infection, teratogens), or multi-factorial medical etiologies.

This special issue of the Journal of the International Neuropsychological Society focuses upon such conditions with known medical or genetic etiologies, and includes 11 papers presenting innovative and novel data related to the neuropsychology (including identification of biomarkers) of specific neurodevelopmental disorders. Included in the issue are seven studies reporting new empirical findings, two critical reviews, and two case reports. The timing of this special issue follows on the heels of the 50th anniversary of the implementation of US PL-88-164 (“Mental Retardation Facilities Construction Act”), which, in 1967, provided financial support for the development 18 University Affiliated Programs (emphasizing treatment for neurodevelopmental disorders), and 12 Research Centers dedicated to research of neurodevelopmental disorders, all of which have contributed to the scientific innovations that have improved the lives of individuals with neurodevelopmental disorders and their families.

The issue begins with seven empirical studies, emphasizing disorders (both rare and more common) with genetic and associated medical etiologies, with samples ranging in age from early childhood through young adult. Williams syndrome is a rare genetic condition, often associated with intellectual disability and significant visuospatial dysfunction. In the first paper, Prieto-Corona and colleagues report on neuropsychological and functional outcomes in children with Williams syndrome, with and without the additional (even rarer) deletion of the GTF2IRD2 gene. They showed that those individuals with the additional genetic deletion had even greater dysfunction in visuospatial and social cognition, compared to those with without the deletion.

Antschel et al. report findings from a rich, 9-year longitudinal dataset of individuals with 22q11.2 deletion syndrome, a disorder associated with high risk for functional impairment and psychosis. They found that early executive function, especially working memory deficits, were associated with later functional impairment, but that the association was seen in both those with and without the disorder, highlighting the importance of early assessment of executive and cognitive control skills as predictors of later outcome.

There is considerable sexual dimorphism observed among individuals with neurodevelopmental disorders. The study of individuals with sex chromosome aneuploidies—conditions characterized by abnormal numbers of X or Y chromosomes, for example, Klinefelter syndrome (XXY) or Turner syndrome (XO)—provides a highly relevant framework to investigate the etiology of some sex differences in development and function. In this issue, Udhnani and colleagues and Maiman and colleagues report on a less studied variant of sex chromosome aneuploidies—those with trisomies, tetrasomies, and pentasomies—showing an association between these variants and reductions in verbal fluency, with severity of deficits related linearly to the number of supernumerary X chromosomes.

The dystrophinopathies (including Duchenne and Becker muscular dystrophies) are X-linked muscle diseases associated with abnormal expression of the protein dystrophin. These conditions affect primarily males and result in a wide range of functional cognitive deficits. Fee and colleagues report on neuropsychological performance in a sample of 50 boys with muscular dystrophy, grouped by gene mutation position relative to exon 43. They found that boys with mutation downstream from exon 43 showed greater academic deficits, relative to those with mutation upstream of exon 43.

Medical and surgical advances contribute to an increasing number of individuals surviving congenital heart disease (CHD) and its treatment. King et al. report on neuroimaging findings in a sample of adolescents and young adults with CHD, showing reduced cerebellar volumes, with reductions predictive of executive and cognitive control functions.

The manifestation of neurobehavioral dysfunction among children with neurodevelopmental disorders often occurs early in life. Downes and colleagues present a case control study of executive functions in preschoolers with sickle cell disease (SCD). In their sample, performance-based reductions in inhibitory control and cognitive flexibility were more pronounced than parent reports of similar functions, highlighting the importance of direct assessment of executive control skills in preschoolers with SCD.

Down syndrome (DS) represents the most common genetic etiology of intellectual disability, and is associated with a wide range of medical complications and skill difficulties, especially those implicating hippocampally mediated functions. Edgin and colleagues reported minimal effects of a fast-mapping strategy, hypothesized to incrementally improve word retention, but instead showed that individuals with DS do retain novel words effectively, but only when presented during learning trials in small groups. In a related review, Hammer and colleagues provide a succinct overview of structural anatomic neuroimaging studies of individuals with DS, highlighting widespread reductions in cerebral volume early in life, with smaller effects (relative reductions) observed by adolescence.

Neurofibromatosis type 1 (NF1) is a genetic neurocutaneous disorder associated with learning disabilities, ADHD, and an increased risk for brain tumors. Beaussart and colleagues provide a meta-analysis of 19 studies of individuals with NF1, emphasizing executive control skills. They concluded that, in general, working memory and planning skills were relatively more affected than inhibitory control in this population, and that relative difficulties (compared to those without NF1) tend to increase with age through adolescence.

The two final papers in this issue highlight the utility of case studies, especially in rare conditions. Tan et al. report on an individual with Pitt-Hopkins syndrome (PHS), a rare genetic disorder caused by insufficient expression of the TCF4 gene. Nearly all of the few prior published reports on PHS highlight severe intellectual and functional deficits and minimal language use. This case report instead presents findings from an individual who, despite many cognitive limitations, showed some relatively spared language function. In the final paper for this special issue, Kim et al. report on an intervention using different spacing methods to improve word list learning in a young adult with congenital amnesia secondary to premature birth and associated hypoxic-ischemic injury. They found that word recognition improved with repetitions spaced, rather than massed.

As illustrated in this set of papers, neuropsychological studies of neurodevelopmental disorders typically are conducted from a developmental perspective with an increasingly interdisciplinary approach that frequently draws upon (and informs) a refined understanding of endophenotypes and biomarkers. The ultimate hope, of course, is that these research approaches will inform more effective treatment and optimal developmental outcomes for the target populations.

It was a pleasure organizing these papers into this special issue, and we thank the authors for their contribution to this unique collection of studies demonstrating the importance of rigorous neuropsychological inquiry into neurodevelopmental conditions. It is our hope that the readers of the Journal of the International Neuropsychological Society find this collection valuable and are able to build off of the innovative and novel neuropsychological findings in the specific neurodevelopmental disorders presented within.

Individual Titles, Authors, and Articles:

Posterior Cerebellar Volume and Executive Function in Young Adults With Congenital Heart Disease
  • Eric S. Semmel | Georgia State University, Department of Psychology and Neuroscience Institute, Atlanta, Georgia
  • Vonetta M. Dotson | Georgia State University, Department of Psychology and Neuroscience Institute, Atlanta, Georgia
  • Thomas G. Burns | Children’s Healthcare of Atlanta, Atlanta, Georgia
  • William T. Mahle | Children’s Healthcare of Atlanta, Atlanta, Georgia
  • Emory University School of Medicine, Atlanta, Georgia
  • Tricia Z. King | Georgia State University, Department of Psychology and Neuroscience Institute, Atlanta, Georgia

E-mail address | tzking@gsu.edu

The authors declare no conflicts of interest.


As the number of adolescents and young adults (AYAs) surviving congenital heart disease (CHD) grows, studies of long-term outcomesare needed. CHD research documents poor executive function (EF) and cerebellum (CB) abnormalities in children. We examined whether AYAs with CHD exhibit reduced EFand CB volumes. We hypothesized a double dissociation such that the posterior CB is related to EF while the anterior CB is related to motor function. We also investigatedwhether the CB contributes to EF above and beyond processing speed.


Twenty-two AYAs with CHD and 22 matched healthy controls underwentmagnetic resonance imaging and assessment of EF, processing speed, and motor function. Volumetric data were calculated using a cerebellar atlas (SUIT) developed forSPM. Group differences were compared with t tests, relationships were tested with Pearson’s correlations and Fisher’s r to z transformation,and hierarchical regression was used to test the CB’s unique contributions to EF.


CHD patients had reduced CB total, lobular, andwhite matter volume (d=.52–.99) and poorer EF (d=.79–1.01) compared to controls. Significant correlations betweenthe posterior CB and EF (r=.29–.48) were identified but there were no relationships between the anterior CB and motor function nor EF.The posterior CB predicted EF above and beyond processing speed (ps<.001).


This study identifieda relationship between the posterior CB and EF, which appears to be particularly important for inhibitory processes and abstract reasoning. The unique CB contributionto EF above and beyond processing speed alone warrants further study. (JINS, 2018, 24, 939–948)

  1. Ailion, A.S., King, T.Z., Wang, L., Fox, M.E., Mao, H., Morris, R.M., && Crosson, B. (2016). Cerebellar atrophy in adult survivors of childhood cerebellar tumor. Journal of the International Neuropsychological Society, 22(5), 501–511. doi: 10.1017/S1355617716000138 CrossRef  Google Scholar  PubMed 
  2. Alexander, G.E., DeLong, M.R., & Strick, P.L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381. doi: 10.1146/annurev.ne.09.030186.002041 CrossRef  Google Scholar  PubMed 
  3. Allin, M., Matsumoto, H., Santhouse, A.M., Nosarti, C., AlAsady, M.H.S., Stewart, A.L., & Murray, R.M. (2001). Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain, 124(1), 60–66. doi: 10.1093/brain/124.1.60 CrossRef  Google Scholar  PubMed 
  4. Aron, A.R., Fletcher, P.C., Bullmore, E.T., Sahakian, B.J., & Robbins, T.W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6(2), 115–116. doi: 10.1038/nn1003 CrossRef  Google Scholar  PubMed 
  5. Barker, P.C., Nowak, C., King, K., Mosca, R.S., Bove, E.L., & Goldberg, C.S. (2005). Risk factors for cerebrovascular events following fontan palliation in patients with a functional single ventricle. American Journal of Cardiology, 96(4), 587–591. doi: 10.1016/j.amjcard.2005.04.025 CrossRef  Google Scholar  PubMed 
  6. Beca, J., Gunn, J.K., Coleman, L., Hope, A., Reed, P.W., Hunt, R.W., & Shekerdemian, L.S. (2013). New white matter brain injury after infant heart surgery is associated with diagnostic group and the use of circulatory arrest. Circulation, 127(9), 971–979. doi: 10.1161/CIRCULATIONAHA.112.001089 CrossRef  Google Scholar  PubMed 
  7. Bellebaum, C., & Daum, I. (2007). Cerebellar involvement in executive control. Cerebellum, 6(3), 184–192. doi: 10.1080/14734220601169707 CrossRef  Google Scholar  PubMed 
  8. Bellinger, D.C., Wypij, D., Rivkin, M.J., DeMaso, D.R., Robertson, R.L. Jr., Dunbar-Masterson, C., & Newburger, J.W. (2011). Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: Neuropsychological assessment and structural brain imaging. Circulation, 124(12), 1361–1369. doi: 10.1161/CIRCULATIONAHA.111.026963 CrossRef  Google Scholar  PubMed 
  9. Bergemann, A., Hansen, J.H., Rotermann, I., Voges, I., Scheewe, J., Otto-Morris, C., & Kramer, H.H. (2015). Neuropsychological performance of school-aged children after staged surgical palliation of hypoplastic left heart syndrome. European Journal of Cardio-thoracic Surgery, 47(5), 803–811. doi: 10.1093/ejcts/ezu299 CrossRef  Google Scholar  PubMed 
  10. Bolduc, M.E., du Plessis, A.J., Sullivan, N., Guizard, N., Zhang, X., Robertson, R.L., && Limperopoulos, C. (2012). Regional cerebellar volumes predict functional outcome in children with cerebellar malformations. Cerebellum, 11(2), 531–542. doi: 10.1007/s12311-011-0312-z CrossRef  Google Scholar  PubMed 
  11. Bostan, A.C., Dum, R.P., & Strick, P.L. (2010). The basal ganglia communicate with the cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 107(18), 8452–8456. doi: 10.1073/pnas.1000496107 CrossRef  Google Scholar  PubMed 
  12. Brewster, R.C., King, T.Z., Burns, T.G., Drossner, D.M., & Mahle, W.T. (2015). White matter integrity dissociates verbal memory and auditory attention span in emerging adults with congenital heart disease. Journal of the International Neuropsychological Society, 21(1), 22–33. doi: 10.1017/S135561771400109X CrossRef  Google Scholar  PubMed 
  13. Burgess, P.W., & Shallice, T. (1996). Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia, 34(4), 263–272. doi:Doi 10.1016/0028-3932(95)00104-2 CrossRef  Google Scholar  PubMed 
  14. Caligiore, D., Pezzulo, G., Baldassarre, G., Bostan, A.C., Strick, P.L., Doya, K., & Herreros, I. (2017). Consensus paper: Towards a systems-level view of cerebellar function: The interplay between cerebellum, basal ganglia, and cortex. Cerebellum, 16(1), 203–229. doi: 10.1007/s12311-016-0763-3 CrossRef  Google Scholar  PubMed 
  15. Cassidy, A.R., White, M.T., DeMaso, D.R., Newburger, J.W., & Bellinger, D.C. (2015). Executive function in children and adolescents with critical cyanotic congenital heart disease. Journal of the International Neuropsychological Society, 21(1), 34–49. doi: 10.1017/S1355617714001027 CrossRef  Google Scholar  PubMed 
  16. Cohen, J. (1988). Statistical power analysis for the behavioral science (2nd ed.). Hillsdale, NJ: Lawrence Earlbaum Associates. Google Scholar 
  17. Daliento, L., Mapelli, D., Russo, G., Scarso, P., Limongi, F., Iannizzi, P., & Volpe, B. (2005). Health related quality of life in adults with repaired tetralogy of Fallot: Psychosocial and cognitive outcomes. Heart, 91(2), 213–218. doi: 10.1136/hrt.2003.029280 CrossRef  Google Scholar  PubMed 
  18. Delis, D.C., Kaplan, E., & Kramer, J.H. (2001). Delis-Kaplan Executive Function System (D-KEFS). San Antonio, TX: Pearson. Google Scholar 
  19. Dennis, M., & Barnes, M.A. (2010). The cognitive phenotype of spina bifida meningomyelocele. Developmental Disabilities Research Reviews, 16(1), 31–39. doi: 10.1002/ddrr.89 CrossRef  Google Scholar  PubMed 
  20. Dennis, M., Francis, D.J., Cirino, P.T., Schachar, R., Barnes, M.A., & Fletcher, J.M. (2009). Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. Journal of the International Neuropsychological Society, 15(3), 331–343. doi: 10.1017/S1355617709090481 CrossRef  Google Scholar 
  21. Diedrichsen, J. (2006). A spatially unbiased atlas template of the human cerebellum. Neuroimage, 33(1), 127–138. doi: 10.1016/j.neuroimage.2006.05.056 CrossRef  Google Scholar  PubMed 
  22. du Plessis, A.J. (1999). Mechanisms of brain injury during infant cardiac surgery. Seminars in Pediatric Neurology, 6(1), 32–47. doi: 10.1016/s1071-9091(99)80045-x CrossRef  Google Scholar  PubMed 
  23. Gaynor, J.W., Gerdes, M., Nord, A.S., Bernbaum, J., Zackai, E., Wernovsky, G., & Jarvik, G.P. (2010). Is cardiac diagnosis a predictor of neurodevelopmental outcome after cardiac surgery in infancy? The Journal of Thoracic and Cardiovascular Surgery, 140(6), 1230–1237. doi: 10.1016/j.jtcvs.2010.07.069 CrossRef  Google Scholar  PubMed 
  24. Geyer, S., Norozi, K., Buchhorn, R., & Wessel, A. (2009). Chances of employment in women and men after surgery of congenital heart disease: Comparisons between patients and the general population. Congenital Heart Disease, 4(1), 25–33. doi: 10.1111/j.1747-0803.2008.00239.x CrossRef  Google Scholar  PubMed 
  25. Gilboa, S.M., Salemi, J.L., Nembhard, W.N., Fixler, D.E., & Correa, A. (2010). Mortality resulting from congenital heart disease among children and adults in the United States, 1999 to 2006. Circulation, 122(22), 2254–2263. doi: 10.1161/CIRCULATIONAHA.110.947002 CrossRef  Google Scholar  PubMed 
  26. Gioia, G.A., Isquith, P.K., Guy, S.C., & Kenworthy, L. (2000). Behavior rating inventory of executive function. Odessa, FL: Psychological Assessment Resources. Google Scholar 
  27. Heyder, K., Suchan, B., & Daum, I. (2004). Cortico-subcortical contributions to executive control. Acta Psychologica, 115(2-3), 271–289. doi: 10.1016/j.actpsy.2003.12.010 CrossRef  Google Scholar  PubMed 
  28. Hoffman, J.I., Kaplan, S., & Liberthson, R.R. (2004). Prevalence of congenital heart disease. American Heart Journal, 147(3), 425–439. doi: 10.1016/j.ahj.2003.05.003 CrossRef  Google Scholar  PubMed 
  29. Hoshi, E., Tremblay, L., Feger, J., Carras, P.L., & Strick, P.L. (2005). The cerebellum communicates with the basal ganglia. Nature Neuroscience, 8(11), 1491–1493. doi: 10.1038/nn1544 CrossRef  Google Scholar  PubMed 
  30. Ilardi, D., Ono, K.E., McCartney, R., Book, W., & Stringer, A.Y. (2017). Neurocognitive functioning in adults with congenital heart disease. Congenital Heart Disease, 12(2), 166–173. doi: 10.1111/chd.12434 CrossRef  Google Scholar  PubMed 
  31. Jackson, J.L., Misiti, B., Bridge, J.A., Daniels, C.J., & Vannatta, K. (2015). Emotional functioning of adolescents and adults with congenital heart disease: A meta-analysis. Congenital Heart Disease, 10(1), 2–12. doi: 10.1111/chd.12178 CrossRef  Google Scholar  PubMed 
  32. Juranek, J., Dennis, M., Cirino, P.T., El-Messidi, L., & Fletcher, J.M. (2010). The cerebellum in children with spina bifida and Chiari II malformation: Quantitative volumetrics by region. Cerebellum, 9(2), 240–248. doi: 10.1007/s12311-010-0157-x CrossRef  Google Scholar 
  33. Kalbfleisch, M.L., Van Meter, J.W., & Zeffiro, T.A. (2007). The influences of task difficulty and response correctness on neural systems supporting fluid reasoning. Cognitive Neurodynamics, 1(1), 71–84. doi: 10.1007/s11571-006-9007-4 CrossRef  Google Scholar  PubMed 
  34. Karsdorp, P.A., Everaerd, W., Kindt, M., & Mulder, B.J. (2007). Psychological and cognitive functioning in children and adolescents with congenital heart disease: A meta-analysis. Journal of Pediatric Psychology, 32(5), 527–541. doi: 10.1093/jpepsy/jsl047 CrossRef  Google Scholar  PubMed 
  35. King, T.Z., Na, S., & Mao, H. (2015). Neural underpinnings of working memory in adult survivors of childhood brain tumors. Journal of the International Neuropsychological Society, 21(7), 494–505. doi: 10.1017/S135561771500051X CrossRef  Google Scholar  PubMed 
  36. King, T.Z., Smith, K.M., Burns, T.G., Sun, B., Shin, J., Jones, R.A., & Mahle, W.T. (2016). fMRI investigation of working memory in adolescents with surgically treated congenital heart disease. Applied Neuropsychology. Child, 6(1), 7–21. doi: 10.1080/21622965.2015.1065185 CrossRef  Google Scholar  PubMed 
  37. Klouda, L., Franklin, W.J., Saraf, A., Parekh, D.R., & Schwartz, D.D. (2017). Neurocognitive and executive functioning in adult survivors of congenital heart disease. Congenital Heart Disease, 12(1), 91–98. doi: 10.1111/chd.12409 CrossRef  Google Scholar  PubMed 
  38. Koziol, L.F., Budding, D., Andreasen, N., D’Arrigo, S., Bulgheroni, S., Imamizu, H., & Yamazaki, T. (2014). Consensus paper: The cerebellum's role in movement and cognition. Cerebellum, 13(1), 151–177. doi: 10.1007/s12311-013-0511-x CrossRef  Google Scholar  PubMed 
  39. Koziol, L.F., Budding, D.E., & Chidekel, D. (2010). Adaptation, expertise, and giftedness: Towards an understanding of cortical, subcortical, and cerebellar network contributions. Cerebellum, 9(4), 499–529. doi: 10.1007/s12311-010-0192-7 CrossRef  Google Scholar  PubMed 
  40. Koziol, L.F., Budding, D.E., & Chidekel, D. (2012). From movement to thought: Executive function, embodied cognition, and the cerebellum. Cerebellum, 11(2), 505–525. doi: 10.1007/s12311-011-0321-y CrossRef  Google Scholar  PubMed 
  41. Licht, D.J., Wang, J., Silvestre, D.W., Nicolson, S.C., Montenegro, L.M., Wernovsky, G., & Detre, J.A. (2004). Preoperative cerebral blood flow is diminished in neonates with severe congenital heart defects. The Journal of Thoracic and Cardiovascular Surgery, 128(6), 841–849. doi: 10.1016/j.jtcvs.2004.07.022 CrossRef  Google Scholar  PubMed 
  42. Limperopoulos, C., Bassan, H., Gauvreau, K., Robertson, R.L. Jr., Sullivan, N.R., Benson, C.B., & duPlessis, A.J. (2007). Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics, 120(3), 584–593. doi: 10.1542/peds.2007-1041 CrossRef  Google Scholar  PubMed 
  43. Limperopoulos, C., Soul, J.S., Gauvreau, K., Huppi, P.S., Warfield, S.K., Bassan, H., & du Plessis, A.J. (2005). Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics, 115(3), 688–695. doi: 10.1542/peds.2004-1169 CrossRef  Google Scholar  PubMed 
  44. Mahle, W.T., Clancy, R.R., Moss, E.M., Gerdes, M., Jobes, D.R., & Wernovsky, G. (2000). Neurodevelopmental outcome and lifestyle assessment in school-aged and adolescent children with hypoplastic left heart syndrome. Pediatrics, 105(5), 1082–1089. doi: 10.1542/peds.105.5.1082 CrossRef  Google Scholar  PubMed 
  45. Mahle, W.T., Tavani, F., Zimmerman, R.A., Nicolson, S.C., Galli, K.K., Gaynor, J.W., & Kurth, C.D. (2002). An MRI study of neurological injury before and after congenital heart surgery. Circulation, 106(12 Suppl 1), I109–I114. Google Scholar  PubMed 
  46. Mahone, E.M., Zabel, T.A., Levey, E., Verda, M., & Kinsman, S. (2002). Parent and self-report ratings of executive function in adolescents with myelomeningocele and hydrocephalus. Child Neuropsychology, 8(4), 258–270. doi: 10.1076/chin. CrossRef  Google Scholar  PubMed 
  47. Marelli, A.J., Mackie, A.S., Ionescu-Ittu, R., Rahme, E., & Pilote, L. (2007). Congenital heart disease in the general population: Changing prevalence and age distribution. Circulation, 115(2), 163–172. doi: 10.1161/CIRCULATIONAHA.106.627224 CrossRef  Google Scholar  PubMed 
  48. Martin, S., & Kitzman, P. (2017). Evidence of cerebellar dysfunction in children with myelomeningocele. Physical Medicine and Rehabilitation - International, 4(1). CrossRef  Google Scholar 
  49. Mebius, M.J., Kooi, E.M.W., Bilardo, C.M., & Bos, A.F. (2017). Brain injury and neurodevelopmental outcome in congenital heart disease: A systematic review. Pediatrics, 140(1) doi: 10.1542/peds.2016-4055 CrossRef  Google Scholar  PubMed 
  50. Middleton, F., & Strick, P. (1994). Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science, 266(5184), 458–461. doi: 10.1126/science.7939688 CrossRef  Google Scholar  PubMed 
  51. Murdaugh, D.L., King, T.Z., & O’Toole, K. (2017). The efficacy of a pilot pediatric cognitive remediation summer program to prepare for transition of care. Child Neuropsychology, 24, 1–21. doi: 10.1080/09297049.2017.1391949 CrossRef  Google Scholar 
  52. Neau, J.P., Arroyo-Anllo, E., Bonnaud, V., Ingrand, P., & Gil, R. (2000). Neuropsychological disturbances in cerebellar infarcts. Acta Neurologica Scandinavica, 102(6), 363–370. CrossRef  Google Scholar  PubMed 
  53. Ortinau, C., Beca, J., Lambeth, J., Ferdman, B., Alexopoulos, D., Shimony, J.S., & Inder, T. (2012). Regional alterations in cerebral growth exist preoperatively in infants with congenital heart disease. The Journal of Thoracic and Cardiovascular Surgery, 143(6), 1264–1270. doi: 10.1016/j.jtcvs.2011.10.039 CrossRef  Google Scholar  PubMed 
  54. Owen, M., Shevell, M., Donofrio, M., Majnemer, A., McCarter, R., Vezina, G., & Limperopoulos, C. (2014). Brain volume and neurobehavior in newborns with complex congenital heart defects. Journal of Pediatrics, 164(5), 1121–1127 e1121. doi: 10.1016/j.jpeds.2013.11.033 CrossRef  Google Scholar  PubMed 
  55. Petrosini, L., Leggio, M.G., & Molinari, M. (1998). The cerebellum in the spatial problem solving: A co-star or a guest star? Progress in Neurobiology, 56(2), 191–210. CrossRef  Google Scholar  PubMed 
  56. Peyvandi, S., De Santiago, V., Chakkarapani, E., Chau, V., Campbell, A., Poskitt, K.J., & McQuillen, P. (2016). Association of Prenatal Diagnosis of Critical Congenital Heart Disease With Postnatal Brain Development and the Risk of Brain Injury. JAMA Pediatrics, 170(4), e154450. doi: 10.1001/jamapediatrics.2015.4450 CrossRef  Google Scholar  PubMed 
  57. Sanfilipo, M.P., Benedict, R.H., Zivadinov, R., & Bakshi, R. (2004). Correction for intracranial volume in analysis of whole brain atrophy in multiple sclerosis: The proportion vs. residual method. Neuroimage, 22(4), 1732–1743. doi: 10.1016/j.neuroimage.2004.03.037 CrossRef  Google Scholar  PubMed 
  58. Sanz, J.H., Berl, M.M., Armour, A.C., Wang, J., Cheng, Y.I., & Donofrio, M.T. (2017). Prevalence and pattern of executive dysfunction in school age children with congenital heart disease. Congenital Heart Disease, 12(2), 202–209. doi: 10.1111/chd.12427 CrossRef  Google Scholar  PubMed 
  59. Schall, U., Johnston, P., Lagopoulos, J., Jüptner, M., Jentzen, W., Thienel, R., & Ward, P.B. (2003). Functional brain maps of Tower of London performance: A positron emission tomography and functional magnetic resonance imaging study. Neuroimage, 20(2), 1154–1161. doi: 10.1016/s1053-8119(03)00338-0 CrossRef  Google Scholar 
  60. Schoenberg, M.R., & Scott, J.G. (2011). The little black book of neuropsychology: A syndrome-based approach. New York, NY: Springer. CrossRef  Google Scholar 
  61. Smith, A. (1982). Symbol Digit Modalities Test. Los Angeles, CA: Western Psychological Services. Google Scholar 
  62. Stoodley, C.J., & Schmahmann, J.D. (2010). Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex, 46(7), 831–844. doi: 10.1016/j.cortex.2009.11.008 CrossRef  Google Scholar  PubMed 
  63. Sun, L., Macgowan, C.K., Sled, J.G., Yoo, S.J., Manlhiot, C., Porayette, P., & Seed, M. (2015). Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation, 131(15), 1313–1323. doi: 10.1161/CIRCULATIONAHA.114.013051 CrossRef  Google Scholar  PubMed 
  64. Tyagi, M., Austin, K., Stygall, J., Deanfield, J., Cullen, S., & Newman, S.P. (2014). What do we know about cognitive functioning in adult congenital heart disease? Cardiology in the Young, 24(1), 13–19. doi: 10.1017/S1047951113000747 CrossRef  Google Scholar  PubMed 
  65. van Rijen, E.H., Utens, E.M., Roos-Hesselink, J.W., Meijboom, F.J., van Domburg, R.T., Roelandt, J.R., & Verhulst, F.C. (2003). Psychosocial functioning of the adult with congenital heart disease: A 20-33 years follow-up. European Heart Journal, 24(7), 673–683. CrossRef  Google Scholar  PubMed 
  66. Vendrell, P., Junque, C., Pujol, J., Jurado, M.A., Molet, J., & Grafman, J. (1995). The role of prefrontal regions in the Stroop task. Neuropsychologia, 33(3), 341–352. CrossRef  Google Scholar  PubMed 
  67. Volpe, J.J. (2009). Cerebellum of the premature infant: Rapidly developing, vulnerable, clinically important. Journal of Child Neurology, 24(9), 1085–1104. doi: 10.1177/0883073809338067 CrossRef  Google Scholar  PubMed 
  68. von Rhein, M., Kugler, J., Liamlahi, R., Knirsch, W., Latal, B., & Kaufmann, L. (2014). Persistence of visuo-constructional and executive deficits in adolescents after open-heart surgery. Research in Developmental Disabilities, 36C, 303–310. doi: 10.1016/j.ridd.2014.10.027 Google Scholar  PubMed 
  69. Wechsler, D. (2011). Wechsler Abbreviated Scale of Intelligence-Second Edition manual. Bloomington, MN: Pearson. Google Scholar 
  70. Williams, R.V., Ravishankar, C., Zak, V., Evans, F., Atz, A.M., Border, W.L. … Pediatric Heart Network, I. (2010). Birth weight and prematurity in infants with single ventricle physiology: Pediatric heart network infant single ventricle trial screened population. Congenital Heart Disease, 5(2), 96–103. doi: 10.1111/j.1747-0803.2009.00369.x CrossRef  Google Scholar  PubMed 
  71. Wray, J. (2001). Congenital heart disease and cardiac surgery in childhood: Effects on cognitive function and academic ability. Heart, 85(6), 687–691. doi: 10.1136/heart.85.6.687 CrossRef  Google Scholar  PubMed 
  72. Yang, Q., Chen, H., Correa, A., Devine, O., Mathews, T.J., & Honein, M.A. (2006). Racial differences in infant mortality attributable to birth defects in the United States, 1989-2002. Birth Defects Research. Part A, Clinical and Molecular Teratology, 76(10), 706–713. doi: 10.1002/bdra.20308 CrossRef  Google Scholar 
  73. Zeng, S., Zhou, Q.C., Zhou, J.W., Li, M., Long, C., & Peng, Q.H. (2015). Volume of intracranial structures on three-dimensional ultrasound in fetuses with congenital heart disease. Ultrasound in Obstetrics & Gynecology, 46(2), 174–181. doi: 10.1002/uog.14677 CrossRef  Google Scholar  PubMed 
Ameliorating Episodic Memory Deficits in a Young Adult With Developmental (Congenital) Amnesia
  • Alice S.N. Kim | Department of Psychology, York University, Toronto, Canada, Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
  • Foujan Minooei Saberi | Department of Psychology, York University, Toronto, Canada
  • Melody Wiseheart | Department of Psychology, York University, Toronto, Canada, LaMarsh Centre for Child and Youth Research, York University, Toronto, Canada
  • R. Shayna Rosenbaum | Department of Psychology, York University, Toronto, Canada, Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada, Vision: Science to Applications (VISTA) Program, York University, Toronto, Canada

E-mail address | a_kim@yorku.ca

The authors declare no conflicts of interest.


Although the spacing effect has been investigated extensively in a variety of populations, few studies have focused on individualswith hippocampal amnesia and none, to our knowledge, have investigated differences in performance as a function of spacing schedule in these cases. In the currentstudy, we investigated the benefit of expanding and equal-interval, compared to massed, spacing schedules in a developmental amnesic person, H.C., who shows congenitallybased abnormal development of the hippocampal memory system.


Given the possibility of plasticity and reorganization in the developingbrain, we investigated whether H.C. would benefit more from an expanding versus equal-interval schedule using a continuous recognitionparadigm, even though this task has been shown to recruit structures within the medial temporal lobe, including the hippocampus.


H.C. and matched controls both showed a clear spacing effect, although neither group benefited more from an equal-interval or expanding spacing schedule.


The results of the current study show that the spacing effect is an effective and clinically meaningful memory intervention technique that may be applied to clinicalconditions known to affect hippocampal function and episodic memory early in life. (JINS, 2018, 24, 1003–1012)

  1. Aggleton, J.P., & Brown, M.W. (1999). Episodic memory, amnesia, and the hippocampal–anterior thalamic axis. Behavioral and Brain Sciences, 22(3), 425–444. http://doi.org/10.1017/S0140525X99002034 CrossRef  Google Scholar  PubMed 
  2. Balota, D., Duchek, J., Sergent-Marshall, S., & Roediger, H. (2006). Does expanded retrieval produce benefits over equal-interval spacing? Explorations of spacing effects in healthy aging and early stage Alzheimer’s disease. Psychology and Aging, 19–31. doi: 10.1037/0882-7974.21.1.19 CrossRef  Google Scholar  PubMed 
  3. Bindschaedler, C., Peter-Favre, C., Maeder, P., Hirsbrunner, T., & Clarke, S. (2011). Growing up with bilateral hippocampal atrophy: From childhood to teenage. Cortex, 47(8), 931–944. https://doi.org/10.1016/j.cortex.2010.09.005 CrossRef  Google Scholar  PubMed 
  4. Brandt, K.R., Gardiner, J.M., Vargha-Khadem, F., Baddeley, A.D., & Mishkin, M. (2008). Impairment of recollection but not familiarity in a case of developmental amnesia. Neurocase, 15(1), 60–65. http://doi.org/http://dx.doi.org/10.1080/1355479080261302 CrossRef  Google Scholar  PubMed 
  5. Brozinsky, C.J., Yonelinas, A.P., Kroll, N.E., & Ranganath, C. (2005). Lag‐sensitive repetition suppression effects in the anterior parahippocampal gyrus. Hippocampus, 15(5), 557–561. doi: 10.1002/hipo.20087 CrossRef  Google Scholar  PubMed 
  6. Callan, D. E., & Schweighofer, N. (2010). Neural correlates of the spacing effect in explicit verbal semantic encoding support the deficient‐processing theory. Human brain mapping, 31(4), 645–659. DOI: 10.1002/hbm.20894. CrossRef  Google Scholar 
  7. Carpenter, S.K., & DeLosh, E.L. (2005). Application of the testing and spacing effects to name learning. Applied Cognitive Psychology, 19(5), 619–636. http://doi.org/10.1002/acp.1101 CrossRef  Google Scholar 
  8. Cermak, L.S., Butters, N., & Moreines, J. (1974). Some analyses of the verbal encoding deficit of alcoholic Korsakoff patients. Brain and Language, 1(2), 141–150. https://doi.org/10.1016/0093-934X(74)90030-3 CrossRef  Google Scholar 
  9. Cermak, L.S., Verfaellie, M., Lanzoni, S., Mather, M., & Chase, K.A. (1996). Effect of spaced repetitions on amnesia patients’ recall and recognition performance. Neuropsychology, 10(2), 219–227. http://doi.org/10.1037//0894-4105.10.2.219 CrossRef  Google Scholar 
  10. Coltheart, M. (1981). The MRC psycholinguistic database. The Quarterly Journal of Experimental Psychology, 33(4), 497–505. https://doi.org/10.1080/14640748108400805 CrossRef  Google Scholar 
  11. Cooper, J.M., Gadian, D.G., Jentschke, S., Goldman, A., Munoz, M., Pitts, G., & Vargha-Khadem, F. (2015). Neonatal hypoxia, hippocampal atrophy, and memory impairment: Evidence of a causal sequence. Cerebral Cortex, 25(6), 1469–1476. https://doi.org/10.1093/cercor/bht332 CrossRef  Google Scholar  PubMed 
  12. Crawford, J.R., & Howell, D.C. (1998). Comparing an Individual’s Test Score Against Norms Derived from Small Samples. The Clinical Neuropsychologist, 12(4), 482–486. DOI: 10.1076/clin.12.4.482.7241 CrossRef  Google Scholar 
  13. Cull, W.L. (2000). Untangling the benefits of multiple study opportunities and repeated testing for cued recall. Applied Cognitive Psychology, 14(3), 215–235. doi: 10.1002/(SICI)1099-0720(200005/06)14:3<215::AID-ACP640>3.0.CO;2-13.0.CO;2-1>CrossRef Google Scholar 
  14. Dzieciol, A.M., Bachevalier, J., Saleem, K.S., Gadian, D.G., Saunders, R., Chong, W.K.K., & Vargha-Khadem, F. (2017). Hippocampal and diencephalic pathology in developmental amnesia. Cortex, 86, 33–44. http://doi.org/10.1016/j.cortex.2016.09.016 CrossRef  Google Scholar  PubMed 
  15. Ebbinghaus, H. Uber das Gedachtnis. Dover; New York 1885. Google Scholar 
  16. Gerbier, E., & Koenig, O. (2012). Influence of multiple-day temporal distribution of repetitions on memory: A comparison of uniform, expanding, and contracting schedules. The Quarterly Journal of Experimental Psychology, 65(3), 514–525. http://dx.doi.org/10.1080/17470218.2011.600806 CrossRef  Google Scholar  PubMed 
  17. Glenberg, A. (1976). Influences of retrieval processes on the spacing effect in free recall. Journal of Experimental Psychology: Human Learning & Memory, 3, 282–294. http://dx.doi.org/10.1037/0278-7393.3.3.282 Google Scholar 
  18. Goverover, Y., Arango-Lasprilla, J., Hillary, F., Chiaravalloti, N., & Deluca, J. (2009). Application of the spacing effect to improve learning and memory for functional tasks in traumatic brain injury: A pilot study. American Journal of Occupational Therapy, 63(5), 543–548. doi: 10.5014/ajot.63.5.543 CrossRef  Google Scholar  PubMed 
  19. Goverover, Y., Hillary, F.G., Chiaravalloti, N., Arango-Lasprilla, J.C., & DeLuca, J. (2009). A functional application of the spacing effect to improve learning and memory in persons with multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 31(5), 513–522. doi: 10.1080/13803390802287042 CrossRef  Google Scholar  PubMed 
  20. Green, J., Weston, T., Wiseheart, M., & Rosenbaum, R. (2014). Long-term spacing effect benefits in developmental amnesia: Case experiments in rehabilitation. Neuropsychology, 28, 685–694. doi: 10.1037/neu0000070 CrossRef  Google Scholar  PubMed 
  21. Greene, R.L. (1989). Spacing effects in memory: Evidence for a two-process account. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(3), 371. http://dx.doi.org/10.1037/0278-7393.15.3.371 Google Scholar 
  22. Haist, F., Shimamura, A.P., & Squire, L.R. (1992). On the relationship between recall and recognition memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(4), 691–702. http://dx.doi.org/10.1037/0278-7393.18.4.691 Google Scholar  PubMed 
  23. Heaton, R. K., Chelune, G. J., Talley, J. L., Kay, G. G., & Curtiss, G. (1993). Wisconsin Card Sorting Test (WCST) Manual, revised and expanded. Odessa, FL: Psychological Assessment Resources. Google Scholar 
  24. Hurley, N. C., Maguire, E. A., & Vargha-Khadem, F. (2011). Patient HC with developmental amnesia can construct future scenarios. Neuropsychologia, 49, 3620–3628. doi: 10.1016/j.neuropsychologia.2011.09.015 CrossRef  Google Scholar 
  25. Kapler, I.V., Weston, T., & Wiseheart, M. (2015). Spacing in a simulated undergraduate classroom: Long-term benefits for factual and higher-level learning. Learning and Instruction, 36, 38–45. https://doi.org/10.1016/j.learninstruc.2014.11.001 CrossRef  Google Scholar 
  26. Karpicke, J.D., & Roediger, H.L. III. (2007). Expanding retrieval practice promotes short-term retention, but equally spaced retrieval enhances long-term retention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(4), 704. http://dx.doi.org/10.1037/0278-7393.33.4.704 Google Scholar  PubMed 
  27. Karpicke, J.D., & Roediger, H.L. (2010). Is expanding retrieval a superior method for learning text materials? Memory & Cognition, 38, 116–124. doi: 10.3758/MC.38.1.116 CrossRef  Google Scholar  PubMed 
  28. Karpicke, J.D., & Bauernschmidt, A. (2011). Spaced retrieval: Absolute spacing enhances learning regardless of relative spacing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(5), 1250. http://dx.doi.org/10.1037/a0023436 Google Scholar  PubMed 
  29. Kucera, H., & Francis, W.N. (1967). Computational analysis of present day American English. Providence, RI: Brown University Press. Google Scholar 
  30. Küpper-Tetzel, C.E., Kapler, I.V., & Wiseheart, M. (2014). Contracting, equal, and expanding learning schedules: The optimal distribution of learning sessions depends on retention interval. Memory and Cognition, 42, 729–741. http://dx.doi.org/10.3758/s13421-014-0394-1 CrossRef  Google Scholar  PubMed 
  31. Lepage, M., Ghaffar, O., Nyberg, L., & Tulving, E. (2000). Prefrontal cortex and episodic memory retrieval mode. Proceedings of the National Academy of Sciences of the United States of America, 97(1), 506–511. https://doi.org/10.1073/pnas.97.1.506 CrossRef  Google Scholar  PubMed 
  32. Logan, J.M., & Balota, D.A. (2008). Expanded vs. equal interval spaced retrieval practice: Exploring different schedules of spacing and retention interval in younger and older adults. Aging, Neuropsychology, and Cognition, 15(3), 257–280. http://doi.org/10.1080/13825580701322171 CrossRef  Google Scholar  PubMed 
  33. Maddox, G.B., Balota, D.A., Coane, J.H., & Duchek, J.M. (2011). The role of forgetting rate in producing a benefit of expanded over equal spaced retrieval in young and older adults. Psychology and Aging, 26, 661–670. doi: 10.1037/a0022942 CrossRef  Google Scholar  PubMed 
  34. Maguire, E.A., Vargha-Khadem, F., & Mishkin, M. (2001). The effects of bilateral hippocampal damage on fMRI regional activations and interactions during memory retrieval. Brain, 124(6), 1156–1170. https://doi.org/10.1093/brain/124.6.1156 CrossRef  Google Scholar  PubMed 
  35. McAndrews, M.P., & Milner, B. (1991). The frontal cortex and memory for temporal order. Neuropsychologia, 29, 849–859. doi: 10.1016/0028-3932(91)90051-9 CrossRef  Google Scholar  PubMed 
  36. Meyers, J. E., & Meyers, K. R. (1996). Rey Complex Figure Test and Recognition Trial: Supplemental Norms for Children and Adolescents. Florida: PAR. Google Scholar 
  37. Milner, B., Petrides, M., & Smith, M.L. (1985). Frontal lobes and the temporal organization of memory. Human Neurobiology, 4(3), 137–142. Google Scholar 
  38. Moscovitch, M. (1992). Memory and working-with-memory: A component process model based on modules and central systems. Journal of Cognitive Neuroscience, 4, 257–267. doi: 10.1162/jocn.1992.4.3.257 CrossRef  Google Scholar  PubMed 
  39. Moscovitch, M., & Melo, B. (1997). Strategic retrieval and the frontal lobes: Evidence from confabulation and amnesia. Neuropsychologia, 35(7), 1017–1034. https://doi.org/10.1016/S0028-3932(97)00028-6 CrossRef  Google Scholar  PubMed 
  40. Moscovitch, M., & Winocur, G. (1992). The neuropsychology of memory and aging. In F.I.M. Craik & T.A. Salthouse (Eds.), The handbook of aging and cognition (pp. 315–372). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc. Google Scholar 
  41. Moscovitch, M., & Winocur, G. (2002). The frontal cortex and working with memory. In D. T. Stuss & R. T. Knight (Eds.), Principles of frontal lobe function (pp. 188–209). New York, NY, US: Oxford University Press. Google Scholar 
  42. Nakata, T. (2015). Effects of expanding and equal spacing on second language vocabulary learning: Does gradually increasing spacing increase vocabulary learning? Studies in Second Language Acquisition, 37(4), 677–711. https://doi.org/10.1017/S0272263114000825 CrossRef  Google Scholar 
  43. Olsen, R.K., Palombo, D.J., Rabin, J.S., Levine, B., Ryan, J.D., & Rosenbaum, R.S. (2013). Volumetric analysis of medial temporal lobe subregions in developmental amnesia using high-resolution magnetic resonance imaging. Hippocampus, 23(10), 855–860. http://doi.org/10.1002/hipo.22153 CrossRef  Google Scholar  PubMed 
  44. Pashler, H., Bain, P., Bottge, B., Graesser, A., Koedinger, K., McDaniel, M., & Metcalfe, J. (2007). Organizing instruction and study to improve student learning (NCER 2007-2004). Washington, DC: National Center for Education Research, Institute of Education Sciences, U.S. Department of Education. Google Scholar 
  45. Rabin, J. S., Braverman, A., Gilboa, A., Stuss, D. T. & Rosenbaum, R. S. (2012). Theory of mind development can withstand compromised episodic memory development. Neuropsychologia, 50, 3781–3785. DOI: 10.1016/j.neuropsychologia.2012.10.016 CrossRef  Google Scholar 
  46. Rabin, J.S., Olsen, R.K., Gilboa, A., Buchsbaum, B.R., & Rosenbaum, R.S. (2016). Using fMRI to understand event construction in developmental amnesia. Neuropsychologia, 90, 261–273. https://doi.org/10.1016/j.neuropsychologia.2016.07.036 CrossRef  Google Scholar  PubMed 
  47. Raaijmakers, J.G.W. (2003). Spacing and repetition effects in human memory: Application of the SAM model. Cognitive Science, 27, 431–452. https://doi.org/10.1016/S0364-0213(03)00007-7 CrossRef  Google Scholar 
  48. Rosenbaum, R.S., Carson, N., Abraham, N., Bowles, B., Kwan, D., Köhler, S., & Richards, B. (2011). Impaired event memory and recollection in a case of developmental amnesia. Neurocase, 17(5), 394–409. doi: 10.1080/13554794.2010.532138 CrossRef  Google Scholar 
  49. Rosenbaum, R.S., Gao, F., Honjo, K., Raybaud, C., Olsen, R.K., Palombo, D.J., & Black, S.E. (2014). Congenital absence of the mammillary bodies: A novel finding in a well-studied case of developmental amnesia. Neuropsychologia, 65, 82–87. doi: 10.1016/j.neuropsychologia.2014.09.047 CrossRef  Google Scholar 
  50. Rosenbaum, R.S., Gilboa, A., & Moscovitch, M. (2014). Case studies continue to illuminate the cognitive neuroscience of memory. The year in cognitive neuroscience. Annals of the New York Academy of Sciences, 1316, 105–133. https://doi.org/10.1111/nyas.12467 CrossRef  Google Scholar  PubMed 
  51. Rovee-Collier, C. (1995). Time windows in cognitive development. Developmental Psychology, 31(2), 147–169. CrossRef  Google Scholar 
  52. Rovee-Collier, C., Hayne, H., & Colombo, M. (2000). The development of implicit and explicit memory, (Vol. 24). Amsterdam/Philadelphia, PA: John Benjamins Publishing. CrossRef  Google Scholar 
  53. Rugg, M.D., & Wilding, E.L. (2000). Retrieval processing and episodic memory. Trends in Cognitive Science, 4(3), 108–115. doi:https://doi.org/10.1016/S1364-6613(00)01445-5 CrossRef  Google Scholar  PubMed 
  54. Shaughnessy, J., Zimmerman, J., & Underwood, B. (1972). Further evidence on the MP- DP effect in free-recall learning. Journal of Verbal Learning and Verbal Behavior, 11(1), 1–12. https://doi.org/10.1016/S0022-5371(72)80053-7 CrossRef  Google Scholar 
  55. Sobel, H.S., Cepeda, N.J., & Kapler, I.V. (2011). Spacing effects in real‐world classroom vocabulary learning. Applied Cognitive Psychology, 25(5), 763–767. doi: 10.1002/acp.1747 CrossRef  Google Scholar 
  56. Sohlberg, M.M., Ehlhardt, L., & Kennedy, M. (2005). Instructional techniques in cognitive rehabilitation: A preliminary report. Seminars in Speech and Language, 26(4), 268–279. doi: 10.1055/s-2005-922105 CrossRef  Google Scholar  PubMed 
  57. Spreen, O., & Strauss, E. (1998). A compendium of neuropsychological tests: Administration, norms, and commentary (2nd ed.). New York, NY: Oxford University Press. Google Scholar 
  58. Thios, S.J., & D’Agostino, P.R. (1976). Effects of repetition as a function of study-phase retrieval. Journal of Verbal Learning & Verbal Behavior, 15(5), 529–536. http://dx.doi.org/10.1016/0022-5371(76)90047-5 CrossRef  Google Scholar 
  59. Toppino, T. C., & Gerbier, E. (2014). About practice: repetition, spacing, and abstraction. The Psychology of Learning and Motivation, 60, 113–189. DOI: 10.1016/B978-0-12-800090-8.00004-4 CrossRef  Google Scholar 
  60. Tsivilis, D., Vann, S.D., Denby, C., Roberts, N., Mayes, A.R., Montaldi, D., & Aggleton, J.P. (2008). A disproportionate role for the fornix and mammillary bodies in recall versus recognition memory. Nature Neuroscience, 11(7), 834–842. doi: 10.1038/nn.2149 CrossRef  Google Scholar  PubMed 
  61. Tombaugh, T. N., Kozak, J., & Rees, L. (1996). Normative data for the Controlled Oral Word Association Test. Personal Communication. In O. Spreen & E. Strauss (Eds.). A compendium of neuropsychological tests, second edition: Administration, norms, and commentary. New York, NY: Oxford University Press. Google Scholar 
  62. Tulving, E., & Thomson, D.M. (1971). Retrieval processes in recognition memory: Effects of associative context. Journal of Experimental Psychology, 87(1), 116–124. http://dx.doi.org/10.1037/h0030186 CrossRef  Google Scholar 
  63. Tulving, E., & Thomson, D.M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80(5), 352–373. http://dx.doi.org/10.1037/h0020071 CrossRef  Google Scholar 
  64. Vargha-Khadem, F., Gadian, D.G., Watkins, K.E., Connelly, A., Van Paesschen, W., & Mishkin, M. (1997). Differential effects of early hippocampal pathology on episodic and semantic memory. Science, 277(5324), 376–380. doi: 10.1126/science.277.5324.376 CrossRef  Google Scholar  PubMed 
  65. Vargha-Khadem, F., Salmond, C., Friston, K., Gadian, D., & Mishkin, M. (2003). Developmental amnesia: Effect of age at injury. Proceedings of the National Academy of Sciences of the United States of America, 100(17), 10055–10060. doi: 10.1073/pnas.1233756100 CrossRef  Google Scholar  PubMed 
  66. Vilberg, K.L., & Davachi, L. (2013). Perirhinal-hippocampal connectivity during reactivation is a marker for object-based memory consolidation. Neuron, 79(6), 1232–1242. doi: 10.1016/j.neuron.2013.07.013 CrossRef  Google Scholar  PubMed 
  67. Wagner, A. D., Koutstaal, W., Maril, A., Schacter, D. L., & Buckner, R. L. (2000). Task-specific repetition priming in left inferior prefrontal cortex. Cerebral Cortex, 10(12), 1176–1184. http://dx.doi.org/10.1093/cercor/10.12.1176 CrossRef  Google Scholar 
  68. Xue, G., Mei, L., Chen, C., Lu, Z.L., Poldrack, R., & Dong, Q. (2011). Spaced learning enhances subsequent recognition memory by reducing neural repetition suppression. Journal of Cognitive Neuroscience, 23(7), 1624–1633. doi: 10.1162/jocn.2010.21532 CrossRef  Google Scholar  PubMed 
Childhood Executive Functioning Predicts Young Adult Outcomes in 22q11.2 Deletion Syndrome
  • Avery B. Albert | Department of Psychology, Syracuse University, Syracuse, NY
  • Tamara Abu-Ramadan | Department of Psychology, Syracuse University, Syracuse, NY
  • Wendy R. Kates | Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY
  • Wanda Fremont | Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY
  • Kevin M. Antshel | Department of Psychology, Syracuse University, Syracuse, NY
  • Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY

E-mail address | kmantshe@syr.edu

The authors have no conflicts of interest to report.


While individuals with 22q11.2 deletion syndrome (22q11DS) are at increased risk for a variety of functional impairments and psychiatricdisorders, including psychosis, not all individuals with 22q11DS experience negative outcomes. Efforts to further understand which childhood variables best predictadult functional outcomes are needed, especially those that investigate childhood executive functioning abilities.


This longitudinalstudy followed 63 individuals with 22q11DS and 43 control participants over 9 years. Childhood executive functioning ability was assessed using both rater-based andperformance-based measures and tested as predictors of young adult outcomes.


Childhood global executive functioning abilities andparent report of child executive functioning abilities were the most consistent predictors of young adult outcomes. The study group moderated the relationship betweenchild executive functioning and young adult outcomes for several outcomes such that the relationships were stronger in the 22q11DS sample.


Rater-based and performance-based measures of childhood executive functioning abilities predicted young adult outcomes in individuals with and without 22q11DS. Executivefunctioning could be a valuable target for treatment in children with 22q11DS for improving not only childhood functioning but also adult outcomes. (JINS, 2018, 24, 905–916)

  1. Achenbach, T.M. & Rescorla, L.A. (2003). Manual for the ASEBA Adult Forms and Profiles. Burlington, VT: University of Vermont. Google Scholar 
  2. Anderson, P. (2002). Assessment and development of executive function (EF) during childhood. Child Neuropsychology, 8, 71–82. doi:10.1076/chin. CrossRef  Google Scholar  PubMed 
  3. Antshel, K.M., Fremont, W., & Kates, W.R. (2008). The neurocognitive phenotype in velo-cardio-facial syndrome: a developmental perspective. Developmental Disability Research Review, 14(1), 43–51. CrossRef  Google Scholar  PubMed 
  4. Antshel, K.M., Fremont, W., Ramanathan, S., & Kates, W.R. (2017). Predicting cognition and psychosis in young adults with 22q11.2 deletion syndrome. Schizophrenia Bulletin, 43(4), 833–842. doi:10.1093/schbul/sbw135. Google Scholar  PubMed 
  5. Antshel, K.M., Shprintzen, R., Fremont, W., Higgins, A.M., Faraone, S.V., & Kates, W.R. (2010). Cognitive and psychiatric predictors to psychosis in velocardiofacial syndrome: a 3-year follow-up study. Journal of the American Academy of Child and Adolescent Psychiatry, 49(4), 333–344. Google Scholar  PubMed 
  6. Barkley, R.A. & Fischer, M. (2011). Predicting impairment in major life activities and occupational functioning in hyperactive children as adults: self-reported executive function (EF) deficits versus EF tests. Developmental Neuropsychology, 36(2), 137–161. doi:10.1080/87565641.2010.549877. CrossRef  Google Scholar  PubMed 
  7. Bassett, A.S., Chow, E.W.C., Husted, J., Weksberg, R., Caluseriu, O., Webb, G.D., Gatzoulis, M.A. (2005). Clinical features of 78 adults with 22q11 deletion syndrome. American Journal of Medical Genetics. Part A, 138(4), 307–313. doi:10.1002/ajmg.a.30984. CrossRef  Google Scholar  PubMed 
  8. Botto, L.D., May, K., Fernhoff, P.M., Correa, A., Coleman, K., Rasmussen, S.A., Campbell, R.M. (2003). A population-based study of the 22q11.2 deletion: phenotype, incidence, and contribution to major birth defects in the population. Pediatrics, 112(1 Pt 1), 101–107. CrossRef  Google Scholar  PubMed 
  9. Bracy, O.D., Oakes, A.L., Cooper, R.S., Watkins, D., Watkins, M., Brown, D.E., Jewell, C. (1999). The effects of cognitive rehabilitation therapy techniques for enhancing the cognitive/intellectual functioning of seventh- and eighth-grade children. Journal of Cognitive Technology, 4, 19–27. Google Scholar 
  10. Bunge, S.A. & Zelazo, P.D. (2006). A brain-based account of the development of rule use in childhood. Current Directions in Psychological Science, 15(3), 118–121. doi:10.1111/j.0963-7214.2006.00419.x. CrossRef  Google Scholar 
  11. Campbell, L.E., McCabe, K.L., Melville, J.L., Strutt, P.A., & Schall, U. (2015). Social cognition dysfunction in adolescents with 22q11.2 deletion syndrome (velo-cardio-facial syndrome): relationship with executive functioning and social competence/functioning. Journal of Intellectual Disability Research, 59, 845–859. doi:10.1111/jir.12183. CrossRef  Google Scholar  PubMed 
  12. Cannon, T.D., Bearden, C.E., Hollister, J.M., Rosso, I.M., Sanchez, L.E., & Hadley, T. (2000). Childhood cognitive functioning in schizophrenia patients and their unaffected siblings: a prospective cohort study. Schizophrenia Bulletin, 26(2), 379–393. CrossRef  Google Scholar  PubMed 
  13. Chawner, S., Doherty, J.L., Moss, H., Niarchou, M., Walters, J.T.R., Owen, M.J., van den Bree, M.B.M. (2017). Childhood cognitive development in 22q11.2 deletion syndrome: case-control study. British Journal of Psychiatry, 211(4), 223–230. doi:10.1192/bjp.bp.116.195651. CrossRef  Google Scholar  PubMed 
  14. Chow, E.W., Watson, M., Young, D.A., & Bassett, A.S. (2006). Neurocognitive profile in 22q11 deletion syndrome and schizophrenia. Schizophenia Research, 87(1-3), 270–278. doi:10.1016/j.schres.2006.04.007. CrossRef  Google Scholar 
  15. Cooper, A. & Petrides, K.V. (2010). A psychometric analysis of the trait emotional intelligence questionnaire-short form (TEIQue-SF) using item response theory. Journal of Personality Assessment, 92, 449–457. CrossRef  Google Scholar  PubMed 
  16. Culbertson, W.C. & Zillmer, E.A. (1998). The Tower of London(DX): a standardized approach to assessing executive functioning in children. Archives of Clinical Neuropsychology, 13(3), 285–301. CrossRef  Google Scholar 
  17. Cutler-Landsman, D. (2012). Educating Children with Velo-Cardio-Facial Syndrome (also known as 22q11.2 deletion syndrome and DiGeorge syndrome) San Diego, CA: Plural Publishing. Google Scholar 
  18. Delis, D., Kramer, J.H., Kaplan, E., & Ober, B.A. (1994). California Verbal Learning Test - Children’s Version. San Antonio, TX: Psychological Corporation. Google Scholar 
  19. Dennis, M., Francis, D.J., Cirino, P.T., Schachar, R., Barnes, M.A., & Fletcher, J.M. (2009). Why intelligence quotient is not a covariate in cognitive studies of neurodevelopmental disorders. Journal of the International Neuropsychological Society, 15(3), 331–343. doi:10.1017/S1355617709090481. CrossRef  Google Scholar 
  20. Dickson, H., Laurens, K.R., Cullen, A.E., & Hodgins, S. (2012). Meta-analyses of cognitive and motor function in youth aged 16 years and younger who subsequently develop schizophrenia. Psychological Medicine, 42(4), 743–755. doi:10.1017/S0033291711001693. CrossRef  Google Scholar  PubMed 
  21. Fiksinski, A.M., Breetvelt, E.J., Duijff, S.N., Bassett, A.S., Kahn, R.S., & Vorstman, J.A.S. (2017). Autism spectrum and psychosis risk in the 22q11.2 deletion syndrome. Findings from a prospective longitudinal study. Schizophrenia Research, 188, 59–62. doi:10.1016/j.schres.2017.01.032. Google Scholar  PubMed 
  22. Fuller, R., Nopoulos, P., Arndt, S., O’Leary, D., Ho, B.C., & Andreasen, N.C. (2002). Longitudinal assessment of premorbid cognitive functioning in patients with schizophrenia through examination of standardized scholastic test performance. American Journal of Psychiatry, 159(7), 1183–1189. CrossRef  Google Scholar  PubMed 
  23. Fung, W.A.L., Butcher, N.J., Costain, G., Andrade, D.M., Boot, E., Chow, E.W.C., Bassett, A.S. (2015). Practical guidelines for managing adults with 22q11.2 deletion syndrome. Genetics in Medicine, 17(8), 599–609. doi:10.1038/gim.2014.175. CrossRef  Google Scholar  PubMed 
  24. Fusar-Poli, P., Borgwardt, S., Bechdolf, A., Addington, J., Riecher-Rossler, A., Schultze-Lutter, F., Yung, A. (2013). The psychosis high-risk state: a comprehensive state-of-the-art review. JAMA Psychiatry, 70(1), 107–120. doi:10.1001/jamapsychiatry.2013.269. CrossRef  Google Scholar  PubMed 
  25. Gioia, G., Isquith, P., Guy, S., & Kenworthy, L. (2000). Behavior Rating Inventory of Executive Functioning (BRIEF). Lutz, FL: PAR, Inc. Google Scholar 
  26. Golden, J.C. (1978). Stroop Color and Word Test. Chicago: Stoelting Company. Google Scholar 
  27. Gordon, M. (1983). The Gordon Diagnostic System. DeWitt, NY: Gordon Systems. Google Scholar 
  28. Gothelf, D., Schneider, M., Green, T., Debbane, M., Frisch, A., Glaser, B., Eliez, S. (2013). Risk factors and the evolution of psychosis in 22q11.2 deletion syndrome: a longitudinal 2-site study. Journal of the American Academy of Child and Adolescent Psychiatry, 52(11), 1192–1203 e1193. doi:10.1016/j.jaac.2013.08.008. CrossRef  Google Scholar  PubMed 
  29. Grati, F.R., Molina Gomes, D., Ferreira, J.C., Dupont, C., Alesi, V., Gouas, L., Vialard, F. (2015). Prevalence of recurrent pathogenic microdeletions and microduplications in over 9500 pregnancies. Prenatal Diagnosis, 35, 801–809. doi:10.1002/pd.4613. CrossRef  Google Scholar 
  30. Harms, M.B., Zayas, V., Meltzoff, A.N., & Carlson, S.M. (2014). Stability of executive function and predictions to adaptive behavior from middle childhood to pre-adolescence. Frontiers in Psychology, 5(331), doi:10.3389/fpsyg.2014.00331. CrossRef  Google Scholar  PubMed 
  31. Heaton, R.K., Chelune, G.J., Talley, J.L., Kay, G.G., & Curtiss, G. (1993). Wisconsin Card Sorting Test Manual: Revised and Expanded. Odessa, FL: Psychological Assessment Resources. Google Scholar 
  32. Hervey, A.S., Epstein, J.N., & Curry, J.F. (2004). Neuropsychology of adults with attention-deficit/hyperactivity disorder: a meta-analytic review. Neuropsychology, 18(3), 485–503. CrossRef  Google Scholar  PubMed 
  33. Ho, J.S., Radoeva, P.D., Jalbrzikowski, M., Chow, C., Hopkins, J., Tran, W.C., Bearden, C.E. (2012). Deficits in mental state attributions in individuals with 22q11.2 deletion syndrome (velo-cardio-facial syndrome). Autism Research, 5(6), 407–418. doi:10.1002/aur.1252. CrossRef  Google Scholar 
  34. Hooper, S.R., Curtiss, K., Schoch, K., Keshavan, M.S., Allen, A., & Shashi, V. (2013). A longitudinal examination of the psychoeducational, neurocognitive, and psychiatric functioning in children with 22q11.2 deletion syndrome. Research in Developmental Disabilities, 34(5), 1758–1769. doi:10.1016/j.ridd.2012.12.003. CrossRef  Google Scholar  PubMed 
  35. Kee, K.S., Horan, W.P., Salovey, P., Kern, R.S., Sergi, M.J., Fiske, A.P., Green, M.F. (2009). Emotional intelligence in schizophrenia. Schizophrenia Research, 107(1), 61–68. doi:10.1016/j.schres.2008.08.016. CrossRef  Google Scholar 
  36. Keshavan, M.S., Nasrallah, H.A., & Tandon, R. (2011). Schizophrenia, “just the facts” 6. Moving ahead with the schizophrenia concept: from the elephant to the mouse. Schizophrenia Research, 127(1-3), 3–13. doi:10.1016/j.schres.2011.01.011. Google Scholar  PubMed 
  37. Kiley-Brabeck, K. & Sobin, C. (2006). Social skills and executive function deficits in children with the 22q11 deletion syndrome. Applied Neuropsychology, 13(4), 258–268. CrossRef  Google Scholar  PubMed 
  38. Lajiness-O’Neill, R., Beaulieu, I., Asamoah, A., Titus, J.B., Bawle, E., Ahmad, S., Pollack, R. (2006). The neuropsychological phenotype of velocardiofacial syndrome (VCFS): relationship to psychopathology. Archives of Clinical Neuropsychology, 21(2), 175–184. CrossRef  Google Scholar  PubMed 
  39. Maeder, J., Schneider, M., Bostelmann, M., Debbané, M., Glaser, B., Menghetti, S., Eliez, S. (2016). Developmental trajectories of executive functions in 22q11.2 deletion syndrome. Journal of Neurodevelopmental Disorders, 8(1), 10. doi:10.1186/s11689-016-9141-1. CrossRef  Google Scholar  PubMed 
  40. Mariano, M.A., Tang, K., Kurtz, M., & Kates, W.R. (2015). Cognitive remediation for adolescents with 22q11 deletion syndrome (22q11DS): a preliminary study examining effectiveness, feasibility, and fidelity of a hybrid strategy, remote and computer-based intervention. Schizophrenia Research, 166(1-3), 283–289. doi:10.1016/j.schres.2015.05.030. CrossRef  Google Scholar  PubMed 
  41. Mariano, M.A., Tang, K., Kurtz, M., & Kates, W.R. (2018). Examining the durability of a hybrid, remote and computer-based cognitive remediation intervention for adolescents with 22q11.2 deletion syndrome. Early Intervention Psychiatry, 12, 686–693. doi:10.1111/eip.12367 CrossRef  Google Scholar 
  42. Miller, M., Nevado-Montenegro, A.J., & Hinshaw, S.P. (2012). Childhood executive function continues to predict outcomes in young adult females with and without childhood-diagnosed ADHD. Journal of Abnormal Child Psychology, 40(5), 657–668. doi:10.1007/s10802-011-9599-y. CrossRef  Google Scholar  PubMed 
  43. Miller, T.J., McGlashan, T.H., Rosen, J.L., Cadenhead, K., Cannon, T., Ventura, J., Woods, S.W. (2003). Prodromal assessment with the structured interview for prodromal syndromes and the scale of prodromal symptoms: predictive validity, interrater reliability, and training to reliability. Schizophrenia Bulletin, 29(4), 703–715. CrossRef  Google Scholar  PubMed 
  44. Niarchou, M., Zammit, S., van Goozen, S.H., Thapar, A., Tierling, H.M., Owen, M.J., van den Bree, M.B. (2014). Psychopathology and cognition in children with 22q11.2 deletion syndrome. British Journal of Psychiatry, 204(1), 46–54. doi:10.1192/bjp.bp.113.132324. CrossRef  Google Scholar  PubMed 
  45. Petrides, K.V. (2009). Technical Manual for the Trait Emotional Intelligence Questionnaires (TEIQue). London: London Psychometric Laboratory. Google Scholar 
  46. Reichenberg, A. (2010). The assessment of neuropsychological functioning in schizophrenia. Dialogues in Clinical Neuroscience, 12(3), 383–392. Google Scholar 
  47. Rinsky, J.R. & Hinshaw, S.P. (2011). Linkages between childhood executive functioning and adolescent social functioning and psychopathology in girls with ADHD. Child Neuropsychology, 17(4), 368–390. doi:10.1080/09297049.2010.544649. CrossRef  Google Scholar  PubMed 
  48. Roth, R.M., Isquith, P.K., & Gioia, G. (2006). Behavior Rating Inventory of Executive Function®–Adult Version (BRIEF-A). Lutz, FL: Psychological Assessment Resources. Google Scholar 
  49. Schneider, M., Debbane, M., Bassett, A.S., Chow, E.W., Fung, W.L., van den Bree, M., Eliez, S. (2014). Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome. American Journal of Psychiatry, 171(6), 627–639. doi:10.1176/appi.ajp.2013.13070864. CrossRef  Google Scholar 
  50. Seidman, L.J., Buka, S.L., Goldstein, J.M., & Tsuang, M.T. (2006). Intellectual decline in schizophrenia: evidence from a prospective birth cohort 28 year follow-up study. Journal of Clinical and Experimental Neuropsychology, 28(2), 225–242. doi:10.1080/13803390500360471. CrossRef  Google Scholar  PubMed 
  51. Shapiro, H.M., Tassone, F., Choudhary, N.S., & Simon, T.J. (2014). The development of cognitive control in children with chromosome 22q11.2 deletion syndrome. Frontiers in Psychology, 5, 566. doi:10.3389/fpsyg.2014.00566. CrossRef  Google Scholar  PubMed 
  52. Shprintzen, R.J. (2000). Velo-cardio-facial syndrome: a distinctive behavioral phenotype. Mental Retardation and Developmental Disability Research Review, 6(2), 142–147. doi:10.1002/1098-2779(2000)6:2<142::AID-MRDD9>3.0.CO;2-H.3.0.CO;2-H>CrossRef Google Scholar  PubMed 
  53. Sjowall, D., Bohlin, G., Rydell, A.M., & Thorell, L.B. (2017). Neuropsychological deficits in preschool as predictors of ADHD symptoms and academic achievement in late adolescence. Child Neuropsychology, 23(1), 111–128. doi:10.1080/09297049.2015.1063595. CrossRef  Google Scholar  PubMed 
  54. Sparrow, S., Cicchetti, D., & Balla, D. (2005). Vineland Adaptive Behavior Scales, Second Edition (Vineland-II). San Antonio, TX: Pearson Education. Google Scholar 
  55. Tang, S.X., Moore, T.M., Calkins, M.E., Yi, J.J., McDonald-McGinn, D.M., Zackai, E.H., Gur, R.E. (2017). Emergent, remitted and persistent psychosis-spectrum symptoms in 22q11.2 deletion syndrome. Translational Psychiatry, 7(7), e1180. doi:10.1038/tp.2017.157. CrossRef  Google Scholar  PubMed 
  56. van Amelsvoort, T., Henry, J., Morris, R., Owen, M., Linszen, D., Murphy, K., Murphy, D. (2004). Cognitive deficits associated with schizophrenia in velo-cardio-facial syndrome. Schizophrenia Research, 70(2-3), 223–232. CrossRef  Google Scholar  PubMed 
  57. Vorstman, J.A., Breetvelt, E.J., Duijff, S.N., Eliez, S., Schneider, M., Jalbrzikowski, M., Bassett, A.S. (2015). Cognitive decline preceding the onset of psychosis in patients with 22q11.2 deletion syndrome. JAMA Psychiatry, 72, 377–385. doi:10.1001/jamapsychiatry.2014.2671. CrossRef  Google Scholar 
  58. Wechsler, D. (1991). Wechsler Intelligence Scale for Children - Third edition. San Antonio, TX: Psychological Corporation. Google Scholar 
  59. Wechsler, D. (1993). Wechsler Adult Intelligence Scale - Third edition. San Antonio, TX: Psychological Corporation. Google Scholar 
  60. Weinberger, R., Yi, J., Calkins, M., Guri, Y., McDonald-McGinn, D.M., Emanuel, B.S., Gothelf, D. (2016). Neurocognitive profile in psychotic versus nonpsychotic individuals with 22q11.2 deletion syndrome. European Neuropsychopharmacology, 26(10), 1610–1618. doi:10.1016/j.euroneuro.2016.08.003. CrossRef  Google Scholar  PubMed 
  61. Weissman, M.M. (1999). Social Adjustment Scale - Self-Report (SAS-SR) User’s Manual. North Tonawanda, NY: Multi-Health Systems, Inc. Google Scholar 
  62. Woodberry, K.A., Giuliano, A.J., & Seidman, L.J. (2008). Premorbid IQ in schizophrenia: a meta-analytic review. American Journal of Psychiatry, 165(5), 579–587. doi:10.1176/appi.ajp.2008.07081242. CrossRef  Google Scholar  PubMed 
  63. Yi, J.J., Calkins, M.E., Tang, S.X., Kohler, C.G., McDonald-McGinn, D.M., Zackai, E.H., Gur, R.E. (2015). Impact of psychiatric comorbidity and cognitive deficit on function in 22q11.2 deletion syndrome. Journal of Clinical Psychiatry, 76(10), e1262–1270. doi:10.4088/JCP.14m09197. CrossRef  Google Scholar  PubMed